

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

RADIATION TESTING OF THE CONFIGURABLE FAULT
TOLERANT PROCESSOR (CFTP) FOR SPACE-BASED

APPLICATIONS

by

James C. Coudeyras

December 2005

 Thesis Co-Advisors: Herschel H. Loomis, Jr.
 Alan A. Ross

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2005

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Radiation Testing of the Configurable Fault Tolerant
Processor (CFTP) for Space-Based Applications
6. AUTHOR(S) James Coudeyras

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Field Programmable Gate Arrays (FPGAs) provide a reconfigurable asset in the design of space
computing. “Hardware” configurations are stored in FPGA memory elements, which are susceptible to Single
Event Upsets (SEUs). What is the best way to detect and mitigate SEUs and correct them before they become
functional errors? The Configurable Fault Tolerant Processor (CFTP) consists of a controller FPGA (X1)
controlling an experiment FPGA (X2), which can be used to test different fault-mitigation techniques. This focus
of this thesis was to develop and execute a radiation test plan to evaluate different experiments in a proton
radiation beam at Crocker Nuclear Laboratory, Davis, CA. A shift register was designed to determine a proton
flux conducive to SEU observation. The shift register was also modified to create two additional configurations,
implemented with the memory elements of the Look-Up Table and Flip-flops within an FPGA Configurable Logic
Block. The data collected from this program was then analyzed for SEU rates and fault susceptibility. This data
was extrapolated using a radiation environment model to predict the on-orbit SEU-rate for CFTP in the NPSAT1
orbit of 560 km, 35.4 degrees inclination, as well as Virtex II FPGAs and at 1000 and 1500 km altitudes.

15. NUMBER OF
PAGES

165

14. SUBJECT TERMS
Field Programmable Gate Array (FPGA), FPGA testing, FPGA radiation testing, Single Event Effect
(SEE), Single Event Upset (SEU), SEU prediction.

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release, distribution is unlimited

RADIATION TESTING OF THE CONFIGURABLE FAULT TOLERANT
PROCESSOR (CFTP) FOR SPACE-BASED APPLICATIONS

James C. Coudeyras

Lieutenant Commander, United States Navy
B.S., University of Kansas, 1994

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 2005

Author: James C. Coudeyras

Approved by: Herschel H. Loomis, Jr.

Thesis Co-Advisor

Alan A. Ross
Thesis Co-Advisor

Jeffrey B. Knorr
Chairman, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Field Programmable Gate Arrays (FPGAs) provide a reconfigurable asset in the

design of space computing. “Hardware” configurations are stored in FPGA memory

elements, which are susceptible to Single Event Upsets (SEUs). What is the best way to

detect and mitigate SEUs and correct them before they become functional errors? The

Configurable Fault Tolerant Processor (CFTP) consists of a controller FPGA (X1)

controlling an experiment FPGA (X2), which can be used to test different fault-

mitigation techniques. This focus of this thesis was to develop and execute a radiation

test plan to evaluate different experiments in a proton radiation beam at Crocker Nuclear

Laboratory, Davis, CA. A shift register was designed to determine a proton flux

conducive to SEU observation. The shift register was also modified to create two

additional configurations, implemented with the memory elements of the Look-Up Table

and Flip-flops within an FPGA Configurable Logic Block. The data collected from this

program was then analyzed for SEU rates and fault susceptibility. This data was

extrapolated using a radiation environment model to predict the on-orbit SEU-rate for

CFTP in the NPSAT1 orbit of 560 km, 35.4 degrees inclination, as well as Virtex II

FPGAs and at 1000 and 1500 km altitudes.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1

II. BACKGROUND ..5

III. INTEGRATION AND TESTING ..7
A. TYPES OF TESTING ...7

1. Hardware Testing ..7
2. Software Testing...9
3. System Integration and Testing..10
4. Space Qualification/Environmental Tests16
5. Radiation Testing...20

a. CFTP Virtex I vs. CFTP Virtex II..20
b. Ground Testing ...21
c. On-orbit testing ...22

IV. RADIATION TEST PREPARATION...25
A. CFTP INTERFACE PROGRAM ..25
B. SHIFT REGISTER..25

1. Purpose..25
2. X2 Design ..26

a. Detection..26
b. Location/Constraints...28
c. SRL16 Implementation...29

3. Shift Register Variations ...29
4. X1 Design ..31

V. RADIATION TEST RESULTS..35
A. FAULT INJECTION...35

1. FPGA Editor...35
2. JBits...35

B. CYCLOTRON..36
1. CFTP-1..36
2. CFTP-2..39

C. ON-ORBIT SEU-RATE ESTIMATE..41

VI. CONCLUSIONS ..45
A. SUMMARY ..45
B. FOLLOW-ON RESEARCH...46

APPENDIX A: CFTP RADIATION TEST PLAN..49
A. INTRODUCTION..49
B. PURPOSE...49
C. DEVICES UNDER TEST (DUT) ...49

1. CFTP-1 Development Board...49

 viii

2. CFTP-2 Development Board...50
D. TEST EQUIPMENT..52

1. UC-Davis Cyclotron...52
2. Test Configuration (Physical Setup) ..54

a. CFTP-1 ..54
b. CFTP-2 ..58

E. TEST DESCRIPTIONS/PROCEDURES..58
1. Beam Exposure...59
2. Shift Register (CFTP-1)...60
3. CORDIC Approximate (CFTP-1) ..60
4. CORDIC TMR (CFTP-1)..61
5. Shift Register (CFTP-2)...62
6. CORDIC Approximate (CFTP-2) ..63
7. CORDIC TMR (CFTP-2)..63
8. PIX (CFTP-2) ...64
9. Additional Testing..64

F. TEST AGENDA...65
G. SHIPPING INFORMATION: ..65
H. TEST SITE PERSONNEL..65

1. Test Director/Radiation Engineer ..65
2. On-Site NPS personnel ..65
3. On-site NRL personnel ..66
4. Off-site NPS personnel (phone support, etc.)66
5. Off-site additional personnel (phone support, etc.)66
6. UC Davis Test Facility ...66

APPENDIX B: LAN IP ADDRESS ASSIGNMENTS ..67

APPENDIX C: RADIATION TEST DATA SHEET ..69

APPENDIX D: CODE..71
A. SHIFT REGISTER MODULE WITH SRL16E MACRO72
B. X2 TOP LEVEL CODE ..74
C. X2 SHIFT REGISTER CONSTRAINT FILE (VIRTEX I)76
D. X2 SHIFT REGISTER CONSTRAINT FILE (VIRTEX II).....................78
E. X1 SELECTMAP CONFIGURATION CODE ..80
F. X1 SELECTMAP READBACK CODE ..84
G. X1 PC/104 INTERFACE VHDL PACKAGE ...92
H. X1 PC/104 INTERFACE CODE ..94
I. X2 INTERFACE CODE FOR X1 ..99
J. CLOCK CODE ..109
K. X1 TOP-LEVEL CODE..111
L. X1 SHIFT REGISTER CONSTRAINT FILE (VIRTEX I)123
M. X1 SHIFT REGISTER CONSTRAINT FILE (VIRTEX II)...................127
N. SHIFT REGISTER MODULE WITH SRL16E MACRO AND FLIP-

FLOPS...131
O. SHIFT REGISTER MODULE FLIP-FLOPS ONLY..............................133

 ix

P. MATLAB SCRIPT FOR DATA ANALYSIS ...135

LIST OF REFERENCES..137

INITIAL DISTRIBUTION LIST ...141

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. STP-1 Payloads (from [13])...2
Figure 2. Assembled CFTP Board (from [13]) ...8
Figure 3. X1 Software Modules (from [17]) ...11
Figure 4. CFTP Interconnections (From [17]) ..13
Figure 5. Experiment Design and Test Process...14
Figure 6. Tile Map for Virtex I XQV600 (from [17])...15
Figure 7. NPSat-1 Launch Orientation (From [25])..19
Figure 8. Xilinx Virtex I Slice (From [14])...23
Figure 9. Tile Map Display - JBits and Radiation Testing..24
Figure 10. Shift Register Implementation ...27
Figure 11. Secondary Error Detection...27
Figure 12. Shift Register Generation Patterns...28
Figure 13. SRL16E and FF Shift Register Design (SRL+1)...30
Figure 14. SEU Rates for CFTP-1...38
Figure 15. Error-Rate for SRL16+FF (Run Time = 30 minutes)39
Figure 16. SEU Rates for CFTP-2...40
Figure 17. Error-Rate for FF-only (Run Time = 10 minutes) ...41
Figure 18. CFTP-1 Layout ..50
Figure 19. Proton Beam Irradiation Area..51
Figure 20. CFTP-2 Layout and Beam Irradiation Area...51
Figure 21. Crocker Nuclear Laboratory ..52
Figure 22. Beam Test Stand with Square Aperture...53
Figure 23. Test Stand for Experiments..53
Figure 24. CFTP-1 Test Stand...55
Figure 25. CFTP-1 Cabling Layout...57
Figure 26. CFTP-2 Cabling Layout...58

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. Shift Register Length (bits) and Slice Usage (%)..30
Table 2. Sample Shift Register Report...32
Table 3. JBits Fault Injection Results ..36
Table 4. Radiation Testing Results, CFTP-1 ...38
Table 5. Radiation Testing Results, CFTP-2 ...40
Table 6. On-Orbit SEU-Rate Estimates (SEU/day) ...43
Table 7. Equipment List...56
Table 8. Software List..57
Table 9. Experiment Summary ..59
Table 10. Power-Up Procedure..59
Table 11. Test Agenda ...65
Table 12. IP Assignment Log ..67
Table 13. Experiment Description ...69

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

GLOSSARY

ACS Attitude Control Subsystem

API Application Programming Interface

ASIC Application Specific Integrated Circuit

C&DH Command and Data Handler

CFTP Configurable Fault Tolerant Processor

CLB Configuration Logic Block

CORDIC COordinate Rotation DIgital Computer

EDU Engineering Development Unit

EMC Electromagnetic Compatibility

FET Field Effect Transistor

FPGA Field Programmable Gate Array

I/O Input/Output

LEO Low Earth Orbit

LFSR Linear Feedback Shift Register

LUT Look Up Table

MidSTAR1 Midshipman Space Technology Applications Research Satellite
mod 1

MIL-STD Military Specification Standard

MJA Major Address

NPS Naval Postgraduate School

NPSAT1 Naval Postgraduate School Spacecraft Architecture and
Technology Demonstration Satellite

RF Radio Frequency

SEE Single Event Effect

SEU Single Event Upset

SPC Statistical Process Control

STP Space Test Program

TCV Technology Characterization Vehicle

TID Total Ionizing Dose

TMR Triple Modular Redundancy

 xvi

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

 xvii

ACKNOWLEDGMENTS

I would first like to thank my wife, Melissa, and my boys, Alex and Austin. They

have been extremely patient and understanding with my desire to “expand my horizons”

and earn a degree in Electrical Engineering, when earning an Astronautical Engineering

degree would have been the “easier” route. Thanks for making me the luckiest man

around.

To my advisors and CFTP project mates: Thanks for everyone’s help and

devotion. Many long hours were put into this project, not only for my thesis, but every

aspect of making CFTP work. I couldn’t have done my part without a lot of groundwork

before me. More importantly, thanks for making a tedious and trying process so

enjoyable. I promised myself I would only stay in the Navy as long as I was having fun.

If I’m working with people like you, I’ll be in the Navy for a long time to come.

To my classmates: This has truly been the best group I’ve had the pleasure to

work with. It’s rare to find a group so large that works so well together. Fair winds and

following seas (that means best of luck, Super Dave) at your next assignment.

To my professors: Thanks for opening my eyes and helping me develop an

understanding of material that eluded my grasp in my undergraduate days.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 xix

EXECUTIVE SUMMARY

Computing power in space has been limited in the past by the need to qualify a

design early in the acquisition process, in order to ensure that the processor will operate

properly in the space environment for the lifetime of the satellite. Field Programmable

Gate Arrays (FPGAs) offer the advantage of reconfigurable computing, where the

“hardware” configuration is stored in memory elements in an FPGA. These memory

elements are susceptible to Single Event Upsets (SEUs). SEUs, caused by the radiation

environment in space, can have varying effects on a spacecraft ranging from no

functional effect to rendering the spacecraft useless. These SEUs must be detected and

their effects mitigated to best utilize the advantages of using FPGAs.

Continuous testing is done to verify best design practices for configuration and

data redundancy in FPGA design. The Configurable Fault Tolerant Processor (CFTP)

provides a test platform to validate different designs, tools, and design techniques. This

thesis describes the development and testing process of the CFTP and a brief overview of

testing for space applications, using the testing of the CFTP in preparation for the launch

environment as an example. The focus of this thesis is the development and execution of

a radiation test plan for use at the Crocker Nuclear Laboratory in Davis, CA. A shift

register was designed as a test circuit to determine a proton-flux level that was conducive

to SEU observation, while running experiments. The test plan describes two variants of

the CFTP that were tested. The first CFTP design, similar to the flight design for Naval

Postgraduate School Spacecraft Architecture and Technology Demonstration Satellite

(NPSAT1), uses a Xilinx Virtex I (600,000-gate-equivalient) FPGA as the experimental

FPGA. The second CFTP design uses a Xilinx Virtex II (6-million-gate-equivalent)

FPGA as the experimental FPGA.

The test plan provides a list of test equipment and a diagram of the test layout that

was used in Davis, CA. Three programs were tested in the proton radiation beam: a shift

register, a CORDIC algorithm, and PIX (a distributed triple-modular redundant, MIPS-

based processor). The shift register was used to maximize coverage and the probability

 xx

of detecting an SEU when one occurs in the proton beam. These results were used to

establish a proton flux to yield an SEU every 10-30 seconds and extrapolated to establish

a baseline for SEU prediction on orbit.

This shift register was also modified to create two additional configurations by

utilizing different combinations of the SRL16 macro, implemented with the memory

elements of the Look-Up Table (LUT), and Flip-flops within an FPGA Configurable

Logic Block (CLB). A COordinate Rotation DIgital Computer (CORDIC) algorithm was

also tested on both CFTP boards to validate the benefit to using Triple Modular

Redundancy (TMR) and partial reconfiguration.

Focus was then shifted to testing the PIX processor, a distributed-TMR, MIPS-

based processor, designed by Majewicz [7]. The design is too large to fit on the Virtex I-

CFTP, so it was tested solely on the Virtex II-CFTP.

Prior to radiation testing, two fault injection techniques, using FPGA Editor

(Xilinx ISE software package) and JBits 2.8 (Xilinx), were used to verify proper

operation of the experments and determine expected output during testing. Proton

radiation testing of fault mitigation designs occurred in the cyclotron at University of

California-Davis, and results follow the fault injection section. The data collected from

the shift register program was then analyzed for SEU rates and fault susceptibility. This

data was extrapolated using CREME96 to predict the on-orbit SEU-rate for CFTP in the

NPSAT1 orbit of 560 km, 35.4 degrees inclination, as well as Virtex II FPGAs and at

1000 and 1500 km altitudes.

These results validated the fault-injection tool and were extrapolated to provide an

estimate of the on-orbit SEU-rate for NPSAT1 as 1 SEU every 6-7 days. Radiation test

results showed a relatively consistent SEU-rate for different programs, as was expected.

This thesis has only scraped the surface for data collection and analysis for CFTP.

Numerous opportunities for future research exist and are required for a more complete

guide to the performance of CFTP.

Current programs should be run with the fault injection tool for longer periods to

approach asymptotic values (small variances between tests.) New algorithms need to be

 xxi

developed and tested to explore better fault mitigation techniques. TMR methods were

tested with the CORDIC, and PIX implements a distributed TMR design. Quadded-logic

methods could also be tested.

PIX is too large to fit on CFTP-1. Research should be completed to reduce the

size of PIX and test this smaller design on CFTP-1. Finally, an experiment agenda needs

to be developed for the utilization of CFTP aboard NPSAT1 and MidSTAR1.

 xxii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

Computing power in space has been limited in the past by the need to qualify a

design early in the acquisition process, in order to ensure that the processor will operate

properly in the space environment for the lifetime of the satellite. As today’s information

technology continues to expand according to Moore’s law [1], spacecraft designers are

limited from using the most current technology. Additionally, hardware designs must be

completed, tested, and software written for vital spacecraft functions within the

design/acquisition timeline. This problem is mitigated to a degree by the use of Field

Programmable Gate Arrays (FPGAs). A “hardware” configuration is stored in memory

elements in an FPGA, and FPGAs are reconfigurable. This allows for testing and

qualifying the actual hardware, but also allows for continued development of the

application configuration that will be instantiated on the FPGA. These save time and

money in the design of systems, as well as redesign costs to fix errors. The trade space

with FPGAs, though, is reliable computing.

With the increased usage of FPGAs in space applications, reliable computing is a

continuing area of concern. Single event effects (SEEs), caused by the radiation

environment in space, can have varying effects on a spacecraft ranging from no

functional effect to rendering the spacecraft useless. These SEEs can be mitigated with

good designs that use redundancy techniques for data verification. With the advent of

FPGAs, the “hardware” now becomes susceptible to SEEs, where previous hardware

configurations were not. In an FPGA, the configuration is instantiated into a series of

logic blocks consisting of Look-Up Tables, Flip-Flops, and control signals and signal

routing [2]. Because this configuration is not hardware but memory contents, an upset bit

is no longer necessarily just a data error, but could result in a configuration error. In a

worst-case scenario, this could lead to a new configuration that disables the spacecraft

permanently.

To avoid such drastic consequences, continuous testing is done to verify best

design practices for configuration and data redundancy in FPGA design. The

Configurable Fault Tolerant Processor (CFTP) provides a test platform to validate

2

different designs, tools, and design techniques. This thesis reports on the testing of some

of those designs in the cyclotron at University of California-Davis, as well as the

application of the JBits program by Xilinx, Corp to the determination of fault tolerance

[3]. Test results also establish a baseline for on-orbit operation for CFTP, which will be

flying on the Naval Postgraduate School Spacecraft Architecture and Technology

Demonstration Satellite (NPSAT1) and the Midshipman Space Technology and

Applications Research Satellite mod 1 (MidSTAR). Both satellites will be launched on

an Atlas V-401 in October 2006 as part of the Space Test Program (STP-1), shown in

Figure 1.

Figure 1. STP-1 Payloads (from [13])

Chapter II provides a brief summary of the space radiation environment and the

design of CFTP with appropriate references cited for a more detailed description.

Following the background of the intended operating environment and processor design, a

review of various testing methods is provided in Chapter III. Radiation testing is a small

portion of the testing that is completed for any electronic device, especially one intended

for space applications.

3

For a complete understanding of testing involved with electronics, hardware

validation and software testing are first described, leading into integration testing, where

the CFTP design is validated. Because CFTP is designed to operate in space, a review of

the space qualification process and associated environmental testing is then provided.

One part of environmental testing is radiation testing. Radiation in space (high-energy

particles) contributes to two primary effects on electronics. The first is deterioration of

the electronics due to Total Ionizing Dose (TID), and the second is Single Event Effects

(SEE) [4]. Chapter IV describes radiation test preparations and test design requirements

to address the second effect, of which the primary concern is Single Event Upsets

(SEUs).

Three test circuits were developed for this phase of the development. The first

test circuit is a series of shift registers instantiated on X2 (the experiment FPGA) to

utilize as much area as possible. This was developed to maximize coverage and the

probability of generating an error when an SEU occurs in the proton beam. A maximal-

length Linear Feedback Shift Register (LFSR) was used on X1 (control FPGA) to

generate pseudo-random 1s and 0s. These data bits were sent to X2 for shifting through

the registers. The output of each series of shift registers was then processed to identify

potential data-bit SEUs. This design was tested on a Virtex-1 board (CFTP-1) and a

similar board that utilizes a Virtex-II FPGA as X2 (CFTP-2) [5]. These results were

extrapolated to establish a baseline for SEU prediction on orbit.

A COordinate Rotation DIgital Computer (CORDIC) algorithm was also tested on

both CFTP boards to validate the benefit to using Triple Modular Redundancy (TMR)

and partial reconfiguration. An alternate version of the CORDIC that does not use TMR

was also tested [6].

Focus was then shifted to testing the PIX processor designed by Majewicz [7].

This is a MIPS 3000 processor that uses a distributed, pipelined, TMR design. The

design is too large to fit on CFTP-1, so it was only tested on CFTP-2.

All three programs were first tested with fault-simulation techniques. Xilinx ISE

software and JBits were used to emulate faults prior to testing at UC-Davis. These fault

simulation techniques and the testing results are described in Chapter V. These results

4

were then compared to results from radiation testing. Test results validated operation of

these programs in a radiation beam, as well as validating the fault-simulation tools. This

data also provides a baseline for SEU prediction on orbit and a basis for follow-on

programs to be tested with the CFTP experiment.

Finally, Chapter VI summarizes testing results and provides predictions for on-

orbit operation. Additionally, recommendations are provided for future radiation testing

at UC-Davis and on-orbit experiments. While ground testing cannot perfectly imitate the

conditions and actual events in space, radiation testing is an extremely useful tool to

validate electronics design and predict system operation on-orbit.

5

II. BACKGROUND

Electronic components are susceptible to single event effects (SEEs) when

operated in space. This is due to the high-radiation environment that consists of high-

energy neutrons, protons, and heavy ions [8]. This environment must be understood, and

protection against its effects needs to be incorporated into the design of systems intended

for space applications. Application Specific Integrated Circuits (ASICs) have been

designed to survive this environment through radiation hardening and redundancy. The

hardware configuration of these devices is not susceptible to bit upsets. With the advent

of Field Programmable Gate Arrays (FPGAs), the design configurations are stored in

memory as configuration information. A primary advantage is the flexibility to change

design errors through modification of the configuration information, or even upload a

new configuration to accomplish a new mission. Software re-configuration capability

poses a problem in space, though.

In ASICs, SEEs might change a data bit, which could be restored through good

design and incorporation of error detection and correction (EDAC) circuitry. With

FPGAs, an SEE could change the configuration of the processor and render the

equipment or even the spacecraft useless. Due the extensive resource investment (time

and money) into each spacecraft, the risk of losing the function of a satellite due to SEE

is unacceptable [9]. Techniques must be incorporated to mitigate the adverse effects of

SEEs, more specifically Single Event Upsets (SEUs). One such approach is to use triple

modular redundancy (TMR) with partial reconfiguration [10]. This approach is at the

core of the design for the Configurable Fault Tolerant Processor (CFTP). CFTP utilizes

two FPGAs, one as a controller and the other as an experiment platform. The TMR

processor is instantiated on the experiment FPGA, where the data is majority voted.

Ideally, in the event of an SEU, the corrupted data is voted out. In his thesis, Hulme

provided a thorough explanation of the CFTP design and mitigation options and selection

[8].

CFTP is also designed to provide a testbed for other experiments. Various

methods of testing these designs exist, but this thesis focuses on three areas:

6

configuration alteration using Xilinx FPGA Editor, fault injection with a JBits-based tool,

and radiation testing [11]. Radiation testing used proton radiation produced at the

cyclotron of the Crocker Nuclear Laboratory at the University of California-Davis. To

better understand the results of radiation testing, a background of the design, assembly,

and testing of CFTP is provided in the next chapter.

7

III. INTEGRATION AND TESTING

A. TYPES OF TESTING
Descriptions of testing for computers designed for the space environment begin

with two branches: hardware and software. Both items are tested at the unit level up

through the system level. After software is merged with hardware, testing proceeds to

verify proper integrated system operation. Testing then continues for on-orbit

calibration, verification of proper equipment operation and potential for troubleshooting

[9].

1. Hardware Testing
Hardware testing starts with component testing. The process then proceeds

through acceptance testing to a functional test. The following describes the hardware

manufacturing and test process used by David Rigmaiden, Electronics Technician for the

NPS Space Systems Academic Group, for CFTP [12].

Component testing started with part selection. Because CFTP was designed to

operate in the space environment, radiation hardened parts were desired. CFTP is an

experiment, and as such, is not strictly limited to only radiation-hardened components for

production. The CFTP flight board will instead consist of military specification

(MILSPEC) parts, with the exception of the power supplies, which are one grade higher

than MILSPEC, and the FPGAs, which are radiation hardened. After the components

were received and the design board had been fabricated, a fit test was performed. The

assembled board is pictured in Figure 2. This test ensured that all components fit on the

board as designed. If components do not integrate as designed, further investigation is

required to determine whether a part is faulty, if the circuit board was improperly

fabricated, or if the design is bad. After the fit test yields the desired results, the board is

then assembled without major components. This consists of the voltage regulators and

passive components, such as resistors and capacitors [12].

8

Figure 2. Assembled CFTP Board (from [13])

Power is then supplied to the board with the base power supply, which is a 5-volt

source for CFTP. All pins are tested for the expected voltage, and the power is left on for

at least one day to verify the board is capable of sustaining a continuous load. Power is

removed from the board, and the simpler silicon devices, consisting of the Flash memory,

Synchronous Dynamic Random Access Memory (SDRAM), and Electrically Erasable

Programmable Read Only Memory (EEPROM), are attached. The board is then powered

up again, and the board is checked to verify serial communication is capable with the

EEPROM [12]. The boot program and test bench for the EEPROM was generated using

Xilinx ISE software.

The configuration control FPGA (X1) is then attached to the board with a thermal

epoxy and soldered at all pin connections with additional solder at the corners. The

solder at the corners, termed “spiking,” provides additional stiffness. The epoxy serves

two purposes. The first is to provide additional support to the solder joints during the

high vibration environment experienced during launch. The second purpose is to provide

a heat sink for the FPGA during operation, which helps provide heat dissipation in

addition to the heat radiated from the exposed face of the FPGA [12].

9

After the solder and epoxy have hardened, a clock signal is sent from the boot

EEPROM out through X1 to verify the pin connections. After a clock signal is verified,

the experiment FPGA (X2) is soldered and glued to the circuit board, and the board is

ready for software integration testing [12].

2. Software Testing
A primary method of software testing is accomplished with simulation. For

example, the CFTP design uses a Virtex I Pro 600 (XQV600) FPGA for both the

configuration/experiment control processor (X1) and the experiment processor (X2). The

programming for X1 has multiple modules that comprise the whole, all of which must be

tested. The Xilinx Integrated Software Environment (ISE) software can be used to

instantiate these modules, written in VHDL, on a given FPGA (XQV600 in this case).

The ISE software enables users to “synthesize and compile FPGA and Complex

Programmable Logic Devices (CPLD) devices” [14]. A testbench can then be designed

with ModelSim or other simulation software to verify that the modules and overall design

operates as expected. A common and highly recommended practice for any software

design and testing is to plan the design in stages and test each stage as it is completed

[15]. This accomplishes two things. The first is that this approach is conducive to a

modular design, which allows for parallel design/programming and enables easier

implementation of upgrades. The second is that any coding errors are located earlier in

the design process, saving time and cost.

Various simulation programs exist to help verify proper operation. As mentioned

in the example above, ModelSim was used in conjunction with ISE for parts of the CFTP

testing [16]. ModelSim supports VHDL simulation. Not all simulation can be

accomplished with a commercial program, though. A program to simulate the design

must be designed when no product is readily available. This was necessary for the

configuration control FPGA (X1) of CFTP due to the complexity of the design. These

programs and simulations are modified to test a given design.

All operation and interface software was developed by Mindy Surratt, research

associate for the CFTP project [17]. A complete picture of the interface and control

modules on X1 is shown in Figure 3. The initial step was to develop the Very High

Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL) code to

10

interface from the CFTP board through the PC/104 bus to the ARM processor. (The

surrogate processor for the development board is a TMZ104 processor.) The ARM

processor is the interface between the CFTP experiment and data bus of the spacecraft

(Command and Data Handler (C&DH) for NPSAT-1.) As the PC/104 module was

developed and simulated, the CFTP board was completely assembled. The PC/104

module was integrated with and tested on the hardware, and further modules were

developed and tested on the cftp board.

3. System Integration and Testing
Testing was successfully accomplished by programming X1, through the JTAG

(IEEE 1149.1/Boundary Scan), port using iMPACT (part of ISE) to write a constant

value (“2” was used) from X1 to the sTMZ104 through the PC/104 bus. JTAG is a

testing standard that “defines a hardware architecture and the mechanisms” to support

circuit board testing using software solutions [18]. iMPACT is the Xilinx download tool

that uses a parallel connection to the JTAG port on the FPGA [19]. The next step was to

verify write from processor board to X1, through the PC/104 bus. X1 was programmed

to read back various inputs to verify successful read/write communication via the

PC/104. At this point, the VHDL testbenches and ModelSim were used to simulate the

PC/104 modules to determine the clocking sequence and the Xilinx Coregen (part of ISE)

program was used to create the First In, First Out (FIFO) module to act as a buffer, as

well as adding flags for “handshaking” to avoid data conflicts [17].

Communication between X2 and X1 was tested by programming X2 via JTAG to

pass a 25 MHz clock to X1. X1 then printed a “2” out to the PC/104 on 1-to-0 transition,

indicating a clock signal was present. Additionally, the signal was routed to an

Input/Output (I/O) pin, which was connected to an oscilloscope. After X2 was

successfully programmed via JTAG, X2 was configured with a 25 MHz clock from X1

through Selectable Microprocessor Access Port (SelectMAP). SelectMAP is the fastest

method of programming an FPGA, because it uses a byte-wide bidirectional-access port

for reading and writing the configuration data [20]. The 14 I/O-pin and 3 Mode-pin

connections are shown in Figure 4.

11

Figure 3. X1 Software Modules (from [17])

12

Partial reconfiguration was then tested by partially reconfiguring X2 to divide the

clock down to 12.5 MHz. Now that programming and partial-reconfiguration tests were

successful, SelectMAP readback was verified by programming X2 via JTAG, then

reading out the configuration to X1 via SelectMAP out to the PC/104. This concluded in

successful functional tests of the communication between X1 and X2 and the PC/104 bus.

The software module to enable read and write capability between the Flash memory and

X1 was developed next. After successfully erasing, writing, and reading all blocks of the

Flash memory, the SelectMap interface between X1 and X2 was developed. Note that

the capability to read and write to flash from X2 exists but has not been tested yet.

CFTP utilizes the SelectMAP interface, which provides an 8-bit bidirectional

data-bus interface, to the Virtex configuration logic [21], as shown in Figure 4. The

SelectMAP communications were tested by first programming a clock on X2 via JTAG

and sending the clock signal through X1 out to the PC/104 bus. X2 was then

reprogrammed via SelectMAP from X1 to send a different clock signal (the original

clock was divided by two). The clock output on the PC/104 connection was also probed

with an oscilloscope to verify the clock had the proper frequency. This same process was

used to verify proper operation of the SelectMAP readback module. The separate

modules were then incorporated into a top level program and integrated with the

hardware for further testing.

With all software modules tested and operational, an experiment was chosen to

test for proper operation. The process for developing and testing an

experiment/algorithm is shown in Figure 5. A COordinate Rotation DIgital Computer

(CORDIC) algorithm designed by Josh Snodgrass was chosen, because this algorithm

was previously designed to operate on the Xilinx XQVR600 used in CFTP [17]. This

algorithm was instantiated on X1 and X2. The algorithm was provided with a sequence

of 32-bit 2’s complement numbers starting at zero and incremented by a binary digit.

This algorithm uses iterative shifts and adds to perform vector rotations of the input angle

[22]. The output from the X2 algorithm was then compared to the output from the

algorithm on X1. To mitigate any timing issues, the same global clock was used for both

13

X1 and X2. After minor modifications to the X1 interface code, proper operation was

observed with the same output from X1 and X2. A fault injection technique was then

developed to verify proper detection of an error.

Figure 4. CFTP Interconnections (From [17])

14

Figure 5. Experiment Design and Test Process

The first method of fault injection utilized FPGA Editor in the Xilinx ISE

Software. The configuration diagram was opened, and a utilized component was changed

to produce a predictable error. A partial bit file was then generated with the bitgen

command and the original and the new “faulty” designs. This partial bit file was a

configuration bit file based on the difference between the two designs. This bit file was

programmed onto X2 via JTAG while the experiment was operating. The experiment

error counter started to increment, and the output from X2 differed from the X1 output, as

expected. Fault injection using FPGA editor was also used for the shift register designed

for radiation testing, and the results will be discussed in the next section. This method

was useful for determining proper operation of the experiment and to verify the error

counting and reporting module was operating as desired. Unfortunately, this method is

time-consuming.

A fault injection tool was created by Surratt utilizing the Java-based JBits 2.8 by

Xilinx [17]. (The Virtex II FPGA required Jbits 3.0.) JBits is an application

programming interface (API) into the Xilinx family FPGA configuration bitstream. JBits

is tile based, where different tiles represent CLBs, I/O Blocks (IOB), I/O Interfaces (IOI),

Block RAM (BRAM), BRAM Interfaces (BRAMI), Global Clocks (GCLK), and

unconfigurable blocks. A tile map of the Virtex I FPGA is seen in Figure 6. The fault

injection tool can be used to select a configuration bit to change or can be set up to inject

a given number of random configuration bit faults over the entire FPGA, similar to what

could be expected during radiation testing. The program creates a full “corrupted” bit

file, which is programmed into X2 via the JTAG port. This tool was primarily used to

15

anticipate what faults would be seen during radiation testing. These faults would be read

during SelectMAP readbacks and classified as errors when the fault affected program

operation. This tool was developed just prior to radiation testing, but yielded interesting

results in a short time. One such result was the observation of double reconfigurations,

when only one would be expected. Slight modifications were made to the X1/X2

interface code for all experiments and tested again. Double reconfigurations for the

CORDIC algorithm were fixed, but the Shift Register program would still get stuck in a

reconfiguration loop. It was decided to proceed with the programs as is and observe and

compare results during radiation testing. Radiation testing, in turn, produced similar

results, which verified the validity of the fault injection tool.

Radiation testing is also performed during space qualification tests to verify a

component can withstand the radiation environment of space in terms of total ionizing

dose and Single Event Latch-up (SEL) [8]. To complete the integration and testing

overview, a brief description of the space qualitication process and environmental testing

for NPSAT1 and CFTP integration is provided. Focus is then shifted to radiation testing

for CFTP and the observation of radiation effects (SEUs) on the operation of three

different programs.

Figure 6. Tile Map for Virtex I XQV600 (from [17])

16

4. Space Qualification/Environmental Tests
The exponential increase in information-technology performance has led to a

change in how systems are qualified for space. The general progression can be

summarized with the following categories [23]:

1) component - individual discrete, integrated circuits are qualified

2) manufacturing process - manufacturing line is qualified

3) system design - system is qualified

4) design approach/design tools - hardened by design

Initially, component qualification was dictated by Military Specification

Standards (MIL-STD). Now, the focus is on performance specifications, and

manufacturers qualify the process, not the component. The following lists what

manufacturers must show to demonstrate a given radiation hardness level [23]:

1) Model verification, design rule verification and performance verification

2) Statistical Process Control (SPC), Technology Characterization Vehicle

(TCV)

3) Evaluation circuits

4) Parametric Monitors

a) Particular for GaAs devices under total dose, neutron or proton
fluence , test structures must monitor sheet resistance, isolation,
Field Effect Transistor (FET) parameters.

b) Tests shall also examine Dose-rate latchup, dose-rate upset, SEE,
Total Ionizing Dose (TID) and displacement damage by protons or
neutrons.

The last item highlights the more common purpose for radiation testing. As

previously mentioned, radiation testing for CFTP will focus on SEUs and the effect on

circuit operation. In addition to radiation testing, components also undergo additional

environmental testing. The above processes are primarily applied to electronic

components. Further testing is required for circuit cards and system designs.

Environmental tests are designed to validate these designs.

17

Environmental tests are designed to verify the survivability of the component and

system for launch and space environments. For example, the array of testing for NPSat-1

is listed below [24].

1) Functional/Verification Test

 Functionality will be verified before and after every environmental test.

2) Static Loads Test

 The Engineering Development Unit (EDU) will undergo a static loads test

for qualification.

3) Random Vibration Test

 The EDU will undergo three-axis vibration testing for qualification.

4) Low-Level Sine Sweep Test

 This test determines vibration modes and will be performed before and

after each vibration test.

5) Mechanical Shock Test

 A shock test on the EDU will be performed to verify survival from the

spacecraft separation system.

6) Thermal-Vacuum (TVAC) Cycling

 Bad solder joints on electronic components will be detected during this

test.

7) Electromagnetic Compatibility (EMC) Test

 This test verifies that the spacecraft electronics are not susceptible to

damage by radio frequency (RF) emissions during pre-launch, launch and

orbital environments.

8) Mass Properties Test

 Center of Mass and Moments of Intertia data will be determined for

attitude control.

18

9) Magnetics Test

 This test is performed to calibrate the magnetometer to be used for the

attitude control subsystem (ACS).

System testing for CFTP will be performed at the box level prior to integration

with NPSat-1. Box testing will consist of vibration testing, thermal-vacuum cycling, and

electromagnetic interference (EMI) testing. Vibration testing will first be accomplished

in the orientation of launch with just the base plate and a component-less circuit card to

measure deflection. Launch orientation of NPSAT1 was shown in Chapter I, and the

location of CFTP within NPSAT1 is shown in Figure 7. This data will be analyzed to

verify no component damage will occur due to incidental contact with other parts of the

box. The vibration test is then repeated with the processor card inserted in place of the

blank circuit card. This vibration test will verify the components are securely fastened to

the respective circuit cards, and all components are properly fastened to the base plate.

This also validates the engineering design of the CFTP project.

After initial vibration testing is satisfactorily completed (no component loss or

damage), the power supply is added to the base plate and the processor configuration is

placed in the vacuum chamber for TVAC cycling. As mentioned previously, TVAC

cycling locates bad solder joints that may cause a component to dislodge during launch or

prevent a signal from passing through the pin. After TVAC cycling, the entire CFTP

experiment is assembled in the box and put through another vibration test. The final

environmental test for CFTP prior to integration with NPSat-1 is the EMI test. EMI is

mitigated first with part selection and design. Shielded twisted pair (STP) wiring is used

to minimize conducted EMI with other components in the spacecraft. Additionally,

external EMI is mitigated by using an isolated power supply, which also minimizes EM

leakage. Radiated EMI is mitigated by containing the CFTP experiment in an aluminum

box.

CFTP is ready for integration with NPSAT-1 upon completing this box-level

testing. After launch in October 2006, CFTP is ready to run experiments on-orbit and

provide data to correlate with ground radiation testing.

19

Figure 7. NPSat-1 Launch Orientation (From [25])

20

5. Radiation Testing
Radiation testing was conducted in separate stages. The first stage was completed

when FPGA Editor was used to inject a fault to verify proper operation of the given

experiment. The JBits-based fault injection tool was then used to generate multiple faults

during one run period. These results provided an excellent knowledge base for observing

real-time radiation test results at UC-Davis, which were conducted in accordance with

Appendix A. The final stage of radiation testing then occurs after October 2006, with

NPSAT-1 and MidSTAR-1 on-orbit. Fault injection techniques were slightly different

between the two development boards.

a. CFTP Virtex I vs. CFTP Virtex II
The design detailed in [8] will fly on NPSat-1 and MidSTAR-1. A second

board was also built by the Naval Research Laboratory and Silver Engineering for

experiment development and radiation testing. This second board, referred to as CFTP-2,

utilizes a Virtex II, 6-million-gate-equivalent FPGA (XC2V6000) for X2. From the

interface design standpoint, one significant difference between the two boards is the use

of different variants of the same flash memory chips (Intel Advanced Boot Block vs. Intel

Advanced Boot Block+ [blocks are auto-locking]). The flash memory on CFTP-1 is

bottom boot; the first eight blocks are eight Kbytes each. The flash memory on CFTP-2

is conversely, top boot. This difference required a modification to the computer code for

the flash memory. Additionally, a second flash chip was added due to the increased size

of a configuration file for a Virtex II FPGA. These modifications were successfully

tested on CFTP-2. Another difference between the two boards is the lack of SDRAM

memory on CFTP-2. With the increased capacity of the Virtex II FPGA, the SDRAM

was deemed unnecessary. The Virtex II also has a different pinout and array address

naming convention, which yielded a different user constraint file. A user constraint file is

used to specify physical constraints that the user wants to impose, such as a specific

signal tied to a specific pin or a specific program to a specific area of the FPGA. The

constraint files are located in Appendix D. The major difference, though, is the order of

magnitude size difference between the two FPGAs. This enabled the experimenters to

run the PIX program on the CFTP Virtex II board. Once these differences were

understood, the JBits-based fault injection tool was developed for both CFTP boards.

21

b. Ground Testing
The purpose of radiation testing for CFTP is to determine how an

algorithm/experiment is going to operate when SEUs occur. The fault simulators can

simulate these SEUs by “flipping” a bit from a “1” to “0”, or vice versa, and

experimenters can observe the operation/performance. As previously mentioned, using

FPGA Editor to change an item in the configuration drawing was a tedious and time

consuming process. The configuration file (.ncd) is an output from the place and route

function in Xilinx ISE. This file was opened in edit mode, and some function of a LUT,

FF, MUX, routing, etc. was changed. For example, for the shift register the LUT block

was changed from a Xilinx macro-function utilizing the RAM memory elements to a

LUT outputting a constant “1.” The LUT blocks are highlighted squares on the left in

Figure 8. A bit difference file was then created and used to program X2 via JTAG to

simulate the SEU.

As an alternative, the JBits-based fault simulator was designed with a

graphical interface, displaying a tilemap as shown in Figure 6. Specific bits can be

changed, and the graphical interface makes it easy to observe fault occurrence. The first

method of injecting a fault was done by clicking on a particular tile. The program would

then randomly flip a bit within that tile, program X2 with the new “faulty” configuration,

and display the actual location of the injected fault as a red circle. After a fault triggered

a reconfiguration, all corrected faults were displayed as triangles. A picture of the tile

map with uncorrected (circles) and corrected (triangles) faults is shown in Figure 9. A

script was also designed to generate faults at a specified rate to observe multiple faults

over time [17].

The third stage of ground radiation testing was to test the developed

algorithms in the cyclotron at UC-Davis. The test plan used for this testing is in

Appendix A. The cyclotron at Crocker Nuclear Laboratory bombarded CFTP with 63

MeV protons to produce SEUs. The performance of each algorithm was then monitored

for fault and error handling. One minor note for radiation testing is that the Virtex I and

Virtex II FPGAs used for X2 are not radiation hardened. The manufacturing difference

between hardened and unhardened Xilinx FPGAs is the addition of an epitaxial layer for

22

the radiation variant. The epitaxial layer mitigates the likelihood of SEL, as well as

increasing the total dose tolerance of the FPGA [26]. This should not affect the

occurrence of SEUs, but may be an area for future studies. Results from radiation testing

were then compared to the results from the fault injection tool as described earlier.

Radiation results will also be used to establish a baseline for expected SEUs and

experiment operation on-orbit.

c. On-orbit testing
All testing described to this point is intended to validate designs and verify

that systems will withstand the space environment. Although these tests are intended to

be as similar to space conditions as possible, spacecraft engineers are hesitant to utilize

newly developed components or technologies without demonstrated performance in

space. A common method for demonstrating this performance is through an

experimental test bed, such as that provided for CFTP in NPSat-1 and MidSTAR-1. The

CFTP design of using a control and experiment FPGA is not new, but has only been

demonstrated in space on the Adaptive Instrument Module (AIM) launched on the

Australian FEDSAT-1 on 14 December, 2002 [27]. In addition to demonstrating the use

of a control and experiment FPGA, CFTP is designed as a test bed to run different

algorithms to test different reliability strategies and reconfigurability for FPGAs.

Operational data of different algorithms has been collected through ground testing. The

same algorithms will be run on-orbit to validate ground testing results. More

importantly, a TMR processor (PIX must be made smaller to fit on the flight-version

CFTP Virtex I) and other algorithms for configuration-error detection and scrubbing

techniques can be run to determine best practices and designs.

23

Figure 8. Xilinx Virtex I Slice (From [14])

24

Figure 9. Tile Map Display - JBits and Radiation Testing

The inaccessibility of space is precisely why CFTP-like systems are an

ideal solution for computer processing in space. When configuration errors are detected,

a new configuration (or partial configuration) can be programmed with little to no loss in

satellite operations. In this vane, radiation testing for CFTP will help determine best-

practices to detect configuration errors, correct them, and ensure proper operation of the

processor (and other components of the satellite). Preparations for radiation testing are

outlined in the next chapter.

25

IV. RADIATION TEST PREPARATION

A. CFTP INTERFACE PROGRAM
The interface software for CFTP was developed in a modular fashion to enable

simple integration with any X2 experiment. One key function within the X1 code was to

generate error reports and print the output from SelectMAP readbacks. During

development, “heartbeat” error reports were set to print every three seconds. This would

enable the experimenter to verify that his program was still operating and had not stuck in

a steady state, such as could be caused by an SEL. SelectMAP readbacks were

programmed to do a comparison check with the configuration in the Flash memory every

30 seconds. This would allow the experimenter to verify the desired number of SEUs

was occurring. With a reporting program in place, the next step was to develop a

program/circuit to help set the proper proton flux level for the desired SEU rate and

validate results from previous radiation testing with Xilinx FPGAs. A shift register

experiment was then developed for X2 to observe SEUs and ensure the proton flux was at

an appropriate level for data analysis.

B. SHIFT REGISTER
A shift register is a simple circuit that shifts 1s and 0s through a series of flip-

flops. A shift register, which provided for intermediate data comparison, was developed

for initial testing at the UC-Davis cyclotron.

1. Purpose
The desired SEU rate for CFTP radiation testing was arbitrarily chosen to be 2-5

SEUs per minute. This rate would be high enough to observe that SEUs were occurring,

but low enough to enable the experimenters to determine if their algorithm was operating

properly and decipher the test results. A simple algorithm was desired to cover the

maximum amount of physical area on the FPGA chip to allow for the best probability of

a configuration fault manifesting itself as a data error. Maximum area is defined here as

utilizing the maximum number of slices on the FPGA. Each CLB consists of two slices,

pictured in Figure 8. A shift register was chosen due the simplicity of the shift register

26

and the ability to obtain limited SEU location data while the circuit is operating. The bit

length of the shift register was then increased or decreased to maximize the area coverage

of the FPGA.

2. X2 Design
The implementation of the shift register needed to allow for SEU detection,

provide limited location information, and provide for simple length adjustment. Xilinx

FPGAs can use the Look Up Tables (LUTs) as a 16-bit memory element for shift register

implementation with the SRL16 macro. The first shift register design used only these

macros. The second shift register design incorporated flip-flops interleaved with the

SRL16 macros to increase the area usage of the FPGA. The final design disallowed use

of the SRL16 macro, forcing the ISE program to utilize only flip-flops.

The input for the shift register comes from a maximal-length 15-stage LFSR

instantiated on X1. This generates pseudo-random 0s and 1s continuously, until the

program is stopped. Because X1 is not in the proton beam, the output from the LFSR

was assumed to be “safe” from SEU. Possible SEUs could occur between the input at X2

and the input of each shift register, and this possibility is addressed in the detection

design.

a. Detection
Detection of SEUs was implemented using a comparison-based technique

using XOR gates between two different register “trains” [28]. The first design used the

SRL16E (E is for clock enable) for the shift register. To most efficiently compare two

different register trains (further referred to as the a-side and b-side), the sixteenth bit (the

output of each SRL16E) of each train was routed to an XOR gate. If any comparison

output produced a “1”, indicating that an SEU had occurred in one of the trains, a signal

“sumdiff” was pulled high, as illustrated in Figure 10. This shift register module was

then copied 15 additional times to create 16 different columns.

It is also possible that an SEU could occur between the input of the LFSR

bit stream to X2 and the start of the shift register trains, previously mentioned, or

conversely, between the output of the shift registers and the output of X2. This would

lead to a fault propagating simultaneously through the a-side and b-side of the shift

register train, undetectable to the XOR circuitry. A copy of the shift register was initially

27

implemented on X1 to allow for comparison of the sixteen train outputs from X2 to

detect such an SEU. This implementation created some anomalous results during

program operation, so the function was moved to X2. The output from the a-side of the

trains were compared against each other using a 16-input XOR. If the output was a “1”, a

separate error counter would increment. It is recognized that two SEUs could propagate

to produce a “0”, or an undetected fault, but CFTP is designed with the assumption that

two or more SEUs will not occur at the same time. The implementation of this secondary

error detection function is illustrated in Figure 11.

Figure 10. Shift Register Implementation

Figure 11. Secondary Error Detection

28

b. Location/Constraints
To address the ability to discern some location data for SEUs, the output

was designed to reflect a given area of the FPGA. Sixteen areas were chosen as there are

42 auxiliary input/output (I/O) pins between X1 and X2 for programmer usage. Because

the shift register initially used 2 outputs for each copy of the shift register, sixteen would

allow for the maximum number of copies of the shift register. At the same time, sixteen

columns were a small enough number to easily interpret the data reports during the shift

register operation.

Three patterns were considered for generating additional copies of the

shift register. The first was a 4x4 checkerboard pattern, where the report output would be

labeled in a grid pattern A1, A2,…,A4, B1, …, D4. The other two options were sixteen

columns or sixteen rows, with all three options pictured in Figure 12. The checkerboard

pattern had a potential to yield confusing results, based on interpreting the error reports,

compared to the simpler column or row format. A majority of the auxiliary I/O pins for

X2 were located at the top. So in an attempt to increase place-and-route efficiency by the

ISE software, and possibly increasing the length of the shift registers, the column pattern

was chosen. This also provides for an easy report layout.

2
1
0

COLUMNS ROWS

6
5
4
3

0

15
14
13
12
11
10
9
8
74 3 2 18 7 6 512 11 10 9

CHECKERBOARD

15 14 13

B2

C2

D2D1

C1

B1 B4

C4

D4D3

C3

B3

A1 A2 A3 A4

Figure 12. Shift Register Generation Patterns

The VHDL “generate” command was used to make sixteen shift-register

trains. The shift-register module and X2 top-level code are listed in Appendix D. These

shift-register banks were further defined in a constraint file in the Xilinx ISE software to

occupy the columns as defined in Figure 12. The constraint files for the Virtex I and

Virtex II boards are both listed in Appendix D.

29

c. SRL16 Implementation
The length of the shift-register train was defined with a global variable.

This made it easy to increase the size of the shift registers to maximize area coverage of

the FPGA with different implementations for the Virtex I FPGA or (by enlarging the

size) for the larger Virtex II chip. As previously mentioned, the initial shift-register

design used the SRL16 macro. More specifically, the SRL16E, which has a clock enable

function, was used. This clock enable function was used to stop the shift register when

performing a SelectMAP readback. The SRL16E macro uses the four address lines of the

LUT as configuration control to utilize the SRAM cells of the LUT as a 16-stage delay,

where each stage can be tapped. The data shifts on each clock pulse. [29].

Because the SRL16E performs as a 16-bit shift register, the output of each

SRL16E was compared for SEU detection as described earlier. Additionally, 16-bit

increments were used when changing the size of the shift register to maximize FPGA

coverage. The tested version of the shift register using only SRL16E macros (no flip-

flops) contained 2400 bit shift registers and used 88 percent of the slices. Area

constraints during the synthesis process (netlist creation) were a limiting factor that

prevented using 100 percent of the slices. Length and slice usage for the other two

versions of the shift register are summarized in the next section.

3. Shift Register Variations
Two additional variations of the shift register were developed to analyze the data

sensitivity to the LUTs (SRL Macro) and flip-flops. The intent behind the second shift

register design was to force the Xilinx software to utilize the LUTs as SRL16E macros

(like the original shift register design) and the flip-flops, which were not utilized in the

original design [30]. To do this, the sixteenth AND seventeenth bits were XOR’d and

routed to the detector. The design, labeled SRL+1 for SRL plus one bit, is shown in

Figure 13. The third variant utilized only flip-flops by disabling the SRL16 macro

function. Different designs and the two different Virtex chips led to different length shift

registers. Table 1 contains a summary of the different shift register sizes for each

version, along with the slice usage. The percentage of slice usage varies varies from 74

to 97 percent between the various designs on both Virtex chips. The differences are

30

believed to be due to the implementation of the SRL16 macro versus flip-flops on the

same Virtex model, and different structure of a slice on the newer Virtex II.

Due to the modular design of the shift register experiment, only the shift register

module needed to be changed. All top-level code was unchanged, and the VHDL code

for the alternate shift register designs is listed in Appendix D.

Figure 13. SRL16E and FF Shift Register Design (SRL+1)

Table 1. Shift Register Length (bits) and Slice Usage (%)

 Virtex I Virtex II
Shift Register Design Length Slice Usage Length Slice Usage
SRL16E only 2400 88 12000 91
Flip-flops only (no SRL) 320 79 1500 74
SRL16E and flip-flops 2040 89 8500 97

Because proper operation and fault detection reporting was observed with the first

shift register design, fault injection using FPGA Editor was bypassed for the additional

variants of the shift register. All versions were tested with the JBits-based fault-injection

tool, and the results are discussed in Chapter V along with the results from cyclotron

testing.

31

4. X1 Design
The interface VHDL code for X1 was created by Surratt [17]. Shell files for the

X1 top level code, X1-X2 interface code, clocking code, and the constraint file were

modified to operate with the experiment program. SelectMAP and PC/104 modules are

standard for any experiment and are listed in Appendix D.

The first task was to create the X1-X2 interface code (listed in Appendix D). For

the shift register, this included creating the LFSR to generate the bitstream, a parallel

shift register, and a counting/comparator module for reports. The LFSR was based on

Gulotta’s example and modified for the following polynomial: 15 1X X+ + [29]. This

polynomial minimized the tap points to two, but was large enough to generate a pseudo-

random sample of bits. The next task was implementing a copy of the shift register

module on X1. When initial simulations showed anomalous events regarding the

comparison between the X2 shift registers and the X1 copy, this function was moved

onto X2.

The next addition to the interface code was the counting module. This consisted

of seventeen variables: one to count whenever a shift register train did not agree with the

rest and one for the XOR detector output of each of the sixteen columns. “Heartbeat”

reports were printed out to PC/104 every 3 seconds, and a SelectMAP readback was

completed every 30 seconds. If any counter reached 128 errors (hex”80”), the part was

forced to reconfigure. Sample output reporting from the shift register is shown in Table

2. The signal dout allows the experimenter to verify the LFSR is sending 1s (01 01) and

0s (00 00), and sumdiff is a hexadecimal representation of the XOR detector output from

each column. For example, a detected data error in the third column from the right would

read hex”00 04”. The signal dout errcnt is the XOR output from the dout output of each

column, which detects that a possible data error that propagated simultaneously through a

shift register train. Lastly, the counters for each column are displayed relative to the

FPGA, meaning an incrementing counter in one of the right columns indicates an SEU on

the right side of the FPGA.

32

Table 2. Sample Shift Register Report
Selectmap Readback:

Read: 40, Expected: 00, Mask: 00, Location: 027890, MJA: 28, CLB column, left half

Read: e6, Expected: e4, Mask: 00, Location: 059b73, MJA: 64, CLB column, left half

21:57:20

dout: 00 00 sumdiff: 00 00 dout errcnt: 00 Col(15:0) errcnt: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

21:57:22

dout: 00 00 sumdiff: 00 00 dout errcnt: 00 Col(15:0) errcnt: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

21:57:25

dout: 00 00 sumdiff: 00 00 dout errcnt: 00 Col(15:0) errcnt: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

21:57:28

dout: 00 00 sumdiff: 00 00 dout errcnt: 00 Col(15:0) errcnt: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

21:57:31

dout: 00 00 sumdiff: 00 00 dout errcnt: 00 Col(15:0) errcnt: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

21:57:34

dout: 01 01 sumdiff: 00 00 dout errcnt: 00 Col(15:0) errcnt: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

21:57:37

dout: 01 01 sumdiff: 00 00 dout errcnt: 00 Col(15:0) errcnt: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

21:57:40

dout: 00 00 sumdiff: 00 04 dout errcnt: 00 Col(15:0) errcnt: 00 00 00 00 00 00 00 00 00 00 00 00 00 81 00 00

21:57:43

Selectmap Readback:

Read: ba, Expected: fa, Mask: 02, Location: 0076f6, MJA: 6, CLB column, left half

Read: 40, Expected: 00, Mask: 00, Location: 027890, MJA: 28, CLB column, left half

Read: 3d, Expected: 3f, Mask: 00, Location: 043eae, MJA: 49, CLB column, right half

Read: e6, Expected: e4, Mask: 00, Location: 059b73, MJA: 64, CLB column, left half

21:57:44

Selectmap Reconfig...

dout: 00 00 sumdiff: 00 00 dout errcnt: 00 Col(15:0) errcnt: 00 00 00 00 00 00 00 00 00 00 00 00 00 80 00 00

21:57:46

Selectmap Readback:

33

21:57:50

Selectmap Reconfig...

dout: 00 00 sumdiff: 00 00 dout errcnt: 00 Col(15:0) errcnt: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

21:57:53

dout: 01 01 sumdiff: 00 00 dout errcnt: 00 Col(15:0) errcnt: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

21:57:56

dout: 01 01 sumdiff: 00 00 dout errcnt: 00 Col(15:0) errcnt: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

21:57:59

dout: 00 00 sumdiff: 00 00 dout errcnt: 00 Col(15:0) errcnt: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

21:58:02

After the interface code was completed, the clocking code (clockGen.vhd) was

modified. The 25 MHz clock was initially used to the test the shift register program.

Analysis of the timing revealed data paths that were taking up to 79 nanoseconds (ns),

more than the 40 ns duration of the 25 MHz clock. The clock was then divided down

once to produce a 12.5 MHz clock. The copy of the shift register train on X1 was

removed after dividing the clock, which produced a maximum signal delay of 23 ns.

Although the timing constraint of the 25 MHz would then have been met, it was decided

to keep the clock at 12.5 MHz. The clock code is shown in Appendix D.

The last item needed for the experiment to operate was the X1 top level code

(cftp_x1.vhd), which provided overarching control for all the modules on X1. The

primary modifications to this code were to ensure the proper signals to and from X2 were

declared for the X2 experiment. This code is also shown in Appendix D along with the

constraint files for the Virtex I and Virtex II boards.

34

THIS PAGE INTENTIONALLY LEFT BLANK

35

V. RADIATION TEST RESULTS

A. FAULT INJECTION

1. FPGA Editor
FPGA Editor allows the user to manually change the configuration of an FPGA.

This tool was used with the SRL16-only version of the shift register. The final output of

the b-side register is XOR’d with the a-side output to produce the sumdiff bit that is sent

to X1. The a-side output is also compare with the a-side output from the other 15 copies

of the shift register. To produce a singular error, the final output of the b-side register

was changed to a constant ‘1’. This was accomplished by changing the function of the

LUT from a SRL16 shift register to a LUT that outputs a ‘1’. This only produces an error

whenever the output bit from the a-side is a ‘0’. The sumdiff output reads x”80 00,”

indicating the far left column has a data miscompare. The dout errcnt remains x”00 00,”

because the a-side output is still producing the same output as the other 15 shift register

trains. The other observable, Col(15:0) errcnt, increments.

This new configuration was saved, and a bit difference file was created using

bitgen [14]. This bit file was then programmed onto X2 via JTAG. The expected results

described in the previous paragraph were observed. This process deomonstrated that the

error counting function in the X1 programming was operating properly. Because the

other two versions of the shift register use the same X1 code and X2 top-level code (only

the shift register module was changed!), they were not tested in this manner.

2. JBits
JBits was programmed to inject random errors in the Virtex I design to establish a

baseline for fault occurrence and reconfiguration prior to radiation testing. (The fault

injection for the Virtex II using JBits 3.0 was still under development.). All three shift

register versions were tested. Using a modified MATLAB program designed by Josh

Snodgrass, the results were first analyzed for 1-to-0 and 0-to-1 transistions [31]. The

MATLAB script is located in Appendix D. A preponderance of 0-to1 transitions were

observed for the SRL16-only and flip-flop-only shift registers. (The results from these

two versions were sufficient for pre-radiation observations, so the SRL16-plus-flip-flop

36

version was only briefly tested.) The second observation was the number of faults

accumulated before reconfigurations occurred. These results are shown in Table 3.

Table 3. JBits Fault Injection Results

Shift Register 0-to-1 (#) 1-to-0 (#) SEUs (#) Recon’s (#)
Average

SEU/Recon

FF-only (run 1) 68 27 95 24 3.96

FF-only (run 2) 55 42 97 14 6.93

SRL16-only 22 4 25 110 0.227

SRL16 + FF 3 2 5 5 1

B. CYCLOTRON
As previously stated, radiation testing was performed on the CFTP-1 using the

three shift register configurations and two CORDIC algorithms. CFTP-2 was tested with

the same programs and the PIX processor. Results from the CORDIC test runs are

incorporated in an overall analysis for on-orbit SEU prediction. Otherwise, only shift

register results were analyzed.

1. CFTP-1
Radiation testing was first attempted from 30 August - 1 September 2005.

Problems were encountered during initial CFTP set-up. One main problem was that the

CFTP board and the TMZ104 processor DC-power-supplies were set with a 1-Amp limit.

This caused the voltage to drop when attempting to program X1. The current-limit for

the 6-Volt source (set at 5 Volts) supplying power to the TMZ104 processor was

increased to 2 Amps. The processor and board then initialized properly, but the voltage

for the CFTP board would occasionally drop to 2 Volts, drawing 1 Amp. Because the 25-

Volt source (also set at 5 Volts) was limited to a 1-Amp maximum, the current-limit

could not be increased. The short-term fix was to restart CFTP and re-run the CORDIC

experiment, which was the first working experiment. Later refinement of the interface

code fixed the current-voltage problem, along with using separate power supplies with

current-limits set at 3 Amps for the processor and the CFTP board.

Various problems were encountered when attempting to run other experiments,

too. The shift register was not properly implemented with the interface code, so the

37

CORDIC algorithm was the only successful experiment run on CFTP-1. The interface

code was not yet completed for CFTP-2, so no experiments were radiation tested on

CFTP-2. The most significant outcome of the CORDIC testing was the observation of

SEUs. The initial setting of the cyclotron produced a flux of 8.48 x 106 protons/cm2-sec,

which yielded too numerous SEUs to understand what was happening. So, the setting

was decreased to produce a flux of 4.27 x 106 protons/cm2-sec. Proper observation of

what was happening with the CORDIC algorithm and radiation-induced faults was still

unachievable, so the flux was reduced two additional times. The final setting produced a

flux of 8.42 x 105 protons/cm2-sec. The output from the CORDIC algorithm still needed

further refinement to better understand what was happening when SEUs occurred, but the

flux appeared to be the proper level to observe SEUs approximately every 30 seconds.

No further testing was accomplished during this visit.

The August 2005 trip to Davis yielded some lessons-learned. The primary lesson-

learned was that the testing team needed to arrive with fully functional bit-files ready to

run on the CFTP boards. This was not accomplished for the August testing session.

Fully operational bit-files were prepared and tested before the follow-on trip to Davis in

November 2005, and non-working experiments were not an issue. One positive lesson-

learned was that there were a proper number of people to operate and observe the

experiments: one person programming the experiment, one person observing the

graphical display, and one person logging/monitoring the current to the CFTP-board. To

allow for better understanding while an experiment was operating in the proton beam

during future testing, the interface code was modified to output the Major address (MJA)

and the right- or left-half of the FPGA of a fault, along with time stamps for the heartbeat

reports, readbacks and reconfigurations (see Table 2).

Armed with an array of experiments and an improved test agenda (see Appendix

A), testing was completed for CFTP-1 on the first day back at Crocker Nuclear

Laboratory, November 14, 2005. The final cyclotron setting from August was used to

produce a flux of 8.78 x 105 protons/cm2-sec, which yielded one SEU every 10-30

seconds. The SRL16-only shift register was tested first, and configuration faults

appeared every 20 seconds, on average. The cyclotron settings were determined to

produce the desired flux, and testing continued. Shift register and CORDIC results were

38

averaged to calculate an SEU rate, defined as the frequency of configuration faults.

SEUs occurred every 16.6 seconds on average, for the CFTP-1. SEU rate for each

program is shown in Figure 14.

The MATLAB script used on the fault injection results was used for post-testing

analysis of the the radiation testing results of the shift-registers on CFTP-1. The

summary is shown in Table 4

Figure 14. SEU Rates for CFTP-1

Table 4. Radiation Testing Results, CFTP-1

Shift Register 0-to-1 (#) 1-to-0 (#) SEUs (#) Recon’s (#)
Average

SEU/Recon

SRL16-only 16 13 27 7 3.86

SRL16+FF-run 1 15 25 35 7 5

FF-only 13 13 26 4 6.5

SRL16+FF-run 2 76 50 117 19 6.16

0.0000
2.0000
4.0000
6.0000
8.0000

10.0000
12.0000
14.0000
16.0000
18.0000
20.0000

Se
co

nd
s

Time between SEUs

S
R

L

C
O

R
D

IC
 a pprox

C
O

R
D

IC
 TM

R

S
R

L+1

N
o S

R
L

S
R

L+1

Average Flux
8.78 E5 protons/cm^2-sec

39

No significant pattern was observed in the bit transitions, and there was no direct

correlation with the fault injection tool. This could signify the true randomness of

radiation testing. All shift registers yielded an error-rate within 28% of the mean;

relatively similar considering the different component usage within each design. The

error-rate is defined as the frequency that a configuration fault (SEU) triggers a

reconfiguration. Note that a data bit flip can produce multiple increments of the error

counter as the bit progresses through the shift register, reference Figure 10. This is of

note in that a configuration fault that changes the output is assumed to continually

increment an error counter, producing a reconfiguration. It is possible that a data bit

flipped early in the shift register could produce a reconfiguration, too. A chart of the

error-rate is shown in Figure 15. Note that any number of SEUS from 2 to 23 occurred

before a reconfiguration was triggered. The reconfigurations with zero SEUs are

considered flaws in the fault detection program on X1.

Figure 15. Error-Rate for SRL16+FF (Run Time = 30 minutes)

2. CFTP-2
The second day was dedicated to testing with CFTP-2. The first observation was

that faults occurred much more frequently. This was expected with the smaller feature

40

size of the Virtex II FPGA, while using the same proton flux as that used for CFTP-1

testing. SEUs occurred every 1.69 seconds on average with a graph of the SEU rates for

CFTP-2 shown in Figure 16. Bit transitions and error-rates are listed in Table 5. There is

a preponderance of 0-to-1 transitions, but the cause is unknown at this time. There was

also a larger discrepancy in error-rates between the different versions of the shift register.

As with CFTP-1, the number of SEUs that triggered a reconfiguration varied as shown in

Figure 17.

Figure 16. SEU Rates for CFTP-2

Table 5. Radiation Testing Results, CFTP-2

Shift Register 0-to-1 (#) 1-to-0 (#) SEUs (#) Recon’s (#)
Average

SEU/Recon

SRL16+FF-run 1 45 3 47 12 3.92

SRL16+FF-run 2 366 53 414 53 7.81

SRL16-only 164 8 172 19 9.05

FF-only 160 17 172 58 2.96

0.0000
0.2000

0.4000
0.6000
0.8000

1.0000
1.2000
1.4000
1.6000

1.8000
2.0000

Se
co

nd
s

Time between SEUs

S
R

L+1

C
O

R
D

IC
 a pprox

C
O

R
D

IC
 TM

R

S
R

L+1

S
R

L

N
o S

R
L

Average Flux
9.20 E5 protons/cm^2-sec

41

Radiation-testing yielded varying results for bit-transitions and error-rates, but the

SEU rates were similar between different programs run on the same CFTP-board. This

information can be used to make a prediction for SEU frequency on-orbit.

Figure 17. Error-Rate for FF-only (Run Time = 10 minutes)

C. ON-ORBIT SEU-RATE ESTIMATE
The first requirement for estimating on-orbit SEUs is to determine the radiation

environment in which CFTP will be operating. CFTP is manifested on NPSAT1, which

will orbit at 560 km, 35.4 degrees inclination, and MidSTAR1, which will orbit at 492

km, 46 degrees inclination. Proton environment data was obtained from the CREME96

software, which is based on the National Aeronautics and Space Administration’s

(NASA) AP-8 model [32]. Below 1000 km, the average proton-flux is negligible outside

the South Atlantic Anomaly (SAA), centered southeast of Brazil at approximately 33

degrees South latitude, 34 degrees West longitude. The NPSAT1 orbit falls in this

region, so the estimate was based on using the peak proton flux, while in the SAA.

42

CREME96 allows the user to select Solar Minimum or Maximum. Solar

Minimum was chosen due to the higher resulting proton-flux. CREME96 then displays

average flux for 1, 3, 6, 15, 30, 50, and 100 MeV protons, and peak flux for 10, 15, 30, 50

and 100 MeV protons. The displayed flux includes all proton energies at and above that

energy level. 30-MeV protons were chosen, because there is no appreciable increase in

proton-induced bit-upset cross-section above 30 MeV [2]. The bit cross-section is a

measure of susceptibility to SEU in terms of cross-sectional area of the FPGA. Radiation

testing for CFTP did not include radiation characterization, but the XQV600 Virtex I is

similar to the 300-series Virtex I FPGA (XQVR300) tested by Fuller [2]. So, the Proton

SEU Cross Section figure in [2] was used.

The peak proton flux for 560 km (30 MeV protons) is 202 protons/cm2-sec.

Dividing the proton flux of the cyclotron testing (8.78 x 105 protons/cm2-sec) by the peak

proton flux on-orbit yields a flux ratio of 4,341. Converting the testing SEU-rate (0.0604

SEU/sec) from seconds to minutes and dividing by flux ratio yields an SEU-rate of 8.35 x

10-4 SEU/min. The reader should note that this estimate would be true if NPSAT1 were

in the SAA for the entire orbit, so this rate was multiplied by a factor to account for the

fraction of the orbit that NPSAT1 is in the SAA. NPSAT1 will fly through the SAA

approximately 15 minutes per 96-minute orbit. Over a 24-hour period, NPSAT1 will

orbit the earth 15 times, so NPSAT1 will pass through the SAA approximately 225

minutes each day. Multiplying the on-orbit SEU-rate (8.35 x 10-4 SEU/min) by 225

min/day yields 0.188 SEU/day, or converserly, an SEU will occur every 5.3 days. The

SEU-rate estimates using an average proton-flux for 1000 km and 1500 km (49.9 and 236

protons/cm2-sec, respectively) are summarized in Table 6.

The SEU-rate for CFTP-1 in NPSAT1 is estimated to be 1 SEU/5-6 days. This

estimate does not factor in shielding provided by the spacecraft or aluminum box, so the

actual SEU-rate will most likely be lower. If a Virtex II board is flown, the SEU rate will

increase by an order of magnitude. Also note the increase in proton flux at higher

altitudes. The average proton-flux increases by an order of five just from 1000 km to

1500 km. Higher altitudes would provide an even better environment to test fault-

mitigation schemes.

43

Table 6. On-Orbit SEU-Rate Estimates (SEU/day)

 Peak Flux
560 km

Ave Flux
1000 km

Ave Flux
1500 km

Virtex I 0.188 0.297 1.40
Virtex II 1.76 2.78 13.1

Flux - protons/cm2-sec

44

THIS PAGE INTENTIONALLY LEFT BLANK

45

VI. CONCLUSIONS

A. SUMMARY
The purpose of this thesis was to develop a program for radiation testing of CFTP.

This program was designed to establish a proper proton-flux level to obtain SEUs at a

rate conducive to follow-on analysis. These results were also used to validate a fault

injection tool and estimate the on-orbit SEU-rate for NPSAT1.

Integration and testing methods were introduced, starting with hardware assembly

and testing. Software integration with hardware was discussed, along with a brief

overview of space qualication of electronic components and how radiation testing is

incorporated. The objectives for radiation testing, ground-based and on-orbit, for CFTP

were stated.

Radiation test preparations were covered with an explanation of the design

philosophy of the shift register. Some valuable lessons-learned were taken from the

initial test session in August 2005. One was an equipment issue, where the power-supply

current-limit of 1 Amp was too low. This was fixed by using two separate power

supplies, with each supply current-limit set at 3 Amps. Streamlining the interface code

prior to November testing also helped prevent power supply issues. The key lesson-

learned, though, was that the experimenters needed to arrive with fully functional bit-

files, ready to test. This was attempted, but not accomplished for the August test-session.

Bit-files for five experiments for CFTP-1 (three shift-registers and two CORDIC

algorithms) and for six experiments on CFTP-2 (PIX was added to the CFTP-1 slate)

were tested prior to arrival at Davis, CA. This hard-work and preparation was reflected

in the November test-session, when testing was completed in two days (a day ahead of

schedule).

The shift register design was successful in that it utilized the maximum area

possible on the FPGA, and provided real-time data for configuration faults that yielded

data errors and triggered reconfigurations. This design was verified by introducing a

configuration error using FPGA Editor and using a JBits-based fault-injection tool. For

CFTP-1, the SRL16-only shift-register appeared to be the most sensitive to faults

46

propogating as data errors. For CFTP-2, though, the flip-flop-only shift-register appeared

most sensitive. The differences could be due to the different structure of Virtex 1 and

Virtex II FPGAs, but is more likely due to the small statistical sample used for analysis.

The number of faults/SEUs that occurred during testing of CFTP-2 versus CFTP-

1 was significantly different. SEUs occurred every 16.6 seconds, on average, for CFTP-

1, while SEUs for CFTP-2 occurred every 1.69 seconds, on average. This order of

magnitude difference is believed to be due to the smaller feature size and closer packing

of the Virtex II FPGA. Continued development and more radiation testing is required to

generate more statistically relelvant data. Radiation test results showed a relatively

consistent error-rate for different programs, as was expected. This information was then

extrapolated using information from CREME96 to estimate the on-orbit SEU-rate for

CFTP to be 1 SEU/5-6 days.

Any of the shift-register configurations or CORDIC algorithms for CFTP-1 may

be used as experiments on-orbit with NPSAT1 or MidSTAR1. Ideally, though, the PIX

processor will be modified and reduced in size to be instantiated onto CFTP-1 for on-

orbit testing. This is a good project for future research.

B. FOLLOW-ON RESEARCH
This thesis has only scraped the surface for data collection and analysis for CFTP.

Numerous opportunities for future research exist and are required for a more complete

guide to the performance of CFTP.

Current programs should be run with the fault injection tool for longer periods to

approach asymptotic values (small variances between tests.)

New algorithms need to be developed and tested to explore better fault mitigation

techniques.

TMR methods were tested with the CORDIC, and PIX implements a distributed

TMR design. Quadded-logic methods could also be tested.

47

PIX is too large to fit on CFTP-1. Research should be completed to reduce the

size of PIX and test this smaller design on CFTP-1. One possible approach to reduce the

size is to use a traditional TMR-approach, where the output of three processors is voted,

vice the distributed architecture of PIX [7].

Finally, an experiment agenda needs to be developed for implementation on

CFTP aboard NPSAT1 and MidSTAR1. An approach similar to the radiation testing

developed in this thesis can be used as a template. The goal would be to prepare the

same experiments used for radiation testing, or develop new configurations for testing

on-orbit.

48

THIS PAGE INTENTIONALLY LEFT BLANK

49

APPENDIX A: CFTP RADIATION TEST PLAN

A. INTRODUCTION
The NPS-led Configurable Fault Tolerant Processor (CFTP) team will conduct

proton radiation testing using the Isochronous Cyclotron at Crocker Nuclear Laboratory,

University of California-Davis on 14 – 16 November 2005. The devices under test

(DUT) will be 2 different development boards based on the CFTP design. The devices

are representative of 2 operational units, similar to Naval Postgraduate School’s (NPS)

CFTP Virtex-I (CFTP-1) design, that are being assembled for integration on two

spacecraft that are scheduled to be launched October 12, 2006. The Naval Research

Laboratory (NRL) built a board for radiation testing based on the CFTP design with a

Virtex-2 FPGA for the experimental FPGA (X2). This test plan outlines facilities,

equipment, beam configurations, test descriptions and procedures, agenda and personnel.

B. PURPOSE
The two sample devices will be tested for single event effects (SEE). They will

also be monitored for the onset of cumulative (total dose) effects, but the experiments

planned should not approach the total dose ratings of either FPGA.. The primary intent

of this testing is to assess the Single Event Upset (SEU) susceptibility of the CFTP design

(under various configuration loads), determine the SEU-induced fault tolerance, and

evaluate partial reconfigurability of tested designs. Test results will also provide a

baseline for on-orbit observations of the same experiments. Post-launch modifications to

the configuration loads are possible, though more difficult due to bandwidth limitations,

so early determination of robust design strategies is beneficial.

C. DEVICES UNDER TEST (DUT)

1. CFTP-1 Development Board
The CFTP-1 development board uses two Xilinx Virtex I, 600,000 gate

equivalent, Field Programmable Gate Arrays (FPGAs). This development board was

built at Naval Postgraduate School as a prototype for the flight boards and software

development model. Highlighted components are seen in Figure 18.

50

Figure 18. CFTP-1 Layout

One FPGA is used as a configuration controller and is referred to as X1. The

second FPGA is the configurable processor, referred to as X2. The focus of this testing

will be on X2. The proton beam pattern on X2 is seen in Figure 19.

2. CFTP-2 Development Board
The second development board, pictured in Figure 20. was built by the Naval

Research Laboratory and Silver Engineering. This board was built specifically for

radiation testing and uses a Xilinx Virtex II, 6 million gate equivalent, FPGA for X2. X1

is a Virtex 1 FPGA, (same as CFTP-1). A Triple Modular Redundant (TMR) MIPS-3000

Processor was originally designed for CFTP-1 to demonstrate the concept of a

configurable, fault tolerant processor, but does not fit on the Virtex-I FPGA. This

experiment (PIX) will only be performed on the CFTP-2 board. The beam pattern for

CFTP-2 is pictured in Figure 20.

51

Figure 19. Proton Beam Irradiation Area

Figure 20. CFTP-2 Layout and Beam Irradiation Area

Irradiation
beam pattern

Irradiation
beam pattern

52

D. TEST EQUIPMENT

1. UC-Davis Cyclotron
Figure 21. shows the physical layout of the South and North Caves of Crocker

Nuclear Laboratory that will be used for this testing. The South Cave will be the

experiment control area, where the experimenter’s will have connectivity to the Linux

laptops controlling the CFTP boards through a Cat 5 Ethernet cable The proton beam

entry point is located in the North Cave, where the CFTP boards will be irradiated on the

radiation target testing table. The irradiation equipment is a 76 inch cyclotron that

provides monoenergetic proton beams up to a maximum energy of 63 MeV. The proton

beam has a diameter of 6 cm (2.4 in) and can be further controlled through a Shielding

Aperture mounted at the beam output, see Figure 22. This testing will use the 4 cm

square aperture to irradiate the entire FPGA, but at the same time, minimize radiation

spillover to the rest of the CFTP components. Figure 23. shows an example setup of

another experiment completed at the UC-Davis facility, where laser crosshairs are used to

ensure proper experiment alignment with the proton beam.

Figure 21. Crocker Nuclear Laboratory

53

Figure 22. Beam Test Stand with Square Aperture

Figure 23. Test Stand for Experiments

Proton Beam output
~ 2 ½ in. Shielding Aperture
Proton Beam output
~ 2 ½ in. Shielding Aperture

54

2. Test Configuration (Physical Setup)

a. CFTP-1
Because the CFTP boards are slightly different and were manufactured at

different locations, each board has a unique test layout. The test stand for CFTP-1 is seen

in Figure 24. A clear plastic plate was placed in front of the board to prevent accidental

contact that may damage the board. A square hole was then cut into the plate directly

over the X2 FPGA to prevent proton energy dissipation through the plastic. This stand

will enable irradiation of the X2 FPGA only. Initial tests will be conducted with X2

orthogonal to the proton beam, because the goal is to maximize SEUs and assess how the

configuration responds. Future tests could evaluate the FPGA at different incident angles

to the beam using a remotely controlled rotating table that would allow the experiment to

rotate while performing a dynamic test.

A Linux-based interface computer will be used in the North Cave (proton

beam) to control the experiment. This computer will be connected to the experiment

serially to the stack controller and in parallel with the JTAG port. The interface computer

will then be connected to the control computer in the South Cave via a 75 foot Ethernet

cable. The interface computer will be used to load and configure CFTP via the stack

controller. The control computer will be able to start, stop, and reset CFTP; receive and

log data from CFTP; and display in real time the SEU count, last error condition code,

and other diagnostics. The list of hardware and software are summarized in Table 7 and

Table 8, respectively.

Two power supplies will be used; the first power supply will provide 5

volts (from the 6 V source). This will allow experimenters to monitor the current to the

CFTP board itself. This power supply (Agilent E3631A) will be controlled by the control

computer via a serial connection (RS-232). Current monitoring will be accomplished

using the Microsoft Excel plug-in provided by Agilent Technologies. The second power

supply will provide power to the stack controller and hard drive. Both power supplies

will plug into a remote power controller to enable experimenters to shut down the

experiment via the Ethernet connection, if necessary. The cabling layout for CFTP-1 is

pictured in Figure 25.

55

Figure 24. CFTP-1 Test Stand

90 degree connector pins

X2 FPGA

Processor Stack

56

Table 7. Equipment List

Equipment Purpose Box
CFTP-1 Experiment
 Vice

Mount experiment

Power Supply #1 (E3631A)
 Power cord
 60 ft serial cable

Power CFTP-1 Board

Control E3631A power supply

Power Supply (HP ???)
 Power cord

Power CFTP-1 Stack controller

Power Controller Remote shutdown capability
CFTP Interface Laptop
 Power cord
 Ethernet cable
 Xilinx parallel cable
 10 ft serial cable

Serial ppp connection to CFTP Stack Controller

Connection to hub in North Cave
Parallel JTAG connection to CFTP Board.
Serial connection to CFTP-1

Monitor
 Keyboard

Monitor CFTP experiments during setup

Control Laptop (Dell D810)
 Power cord
 Ethernet cable

Control experiment from outside vault.

Connection to hub in South Cave

Control Laptop (Dell D610)
 Power cord
 Ethernet cable

Control power supply; log current.

Connection to hub in South Cave

Ethernet hub (D-Link)
 Power cable

South Cave

Ethernet hub (???)
 Power cable

North Cave

Webcam
 Power cable
 Ethernet cable

Monitor current

Connection to hub in North Cave

CFTP-2 Experiment

Power Supply #2 (E3631A)
 Power cord

Power CFTP-2 Board
Note: use 60 ft serial cable listed above

Power Supply (???) Power CFTP-2 Backplane and hard drive
CFTP Interface Laptop (
 Power cord
 Ethernet cable
 Xilinx parallel cable
 10 ft serial cable

Serial ppp connection to CFTP Stack Controller

Connection to hub in North Cave
Parallel JTAG connection to CFTP Board.
Serial connection to CFTP-2

XX Spare Ethernet cables
Power strip Power laptops/experiments in South Cave
Digital Camera
2 Walkie Talkies Communicate between North and South Caves

57

Table 8. Software List

Control Laptop Interface Laptop
Windows XP OS Linux OS
MS Office (Excel for current logging) Xilinx tools Impact

 XDL
Putty (Secure Shell program) Configuration files
Xilinx ISE JBits 2.8
Agilent E3631A Excel plug-in

CDs
Backup of configuration files

Figure 25. CFTP-1 Cabling Layout

58

b. CFTP-2
CFTP-2 is a stand-alone experiment that is operated concurrently with

CFTP-1 at NPS. This set-up will be used at Davis to minimize equipment deviations

during testing and allow for work on either CFTP board while the other is being

irradiated. CFTP-2 will utilize a TMZ104 Stack controller and a TRI-M Engineering

DEV104-ISA backplane for testing. Power is normally supplied to CFTP-2 with one

power supply; however, current monitoring to the CFTP board could not be achieved.

For radiation testing, an additional PC/104 connector was added between the backplane

and CFTP board with the 5 V pin clipped and routed to a separate power supply. This

second power supply will be another Agilent E3631A, which enables current monitoring

using the same process as that for CFTP-1. The cabling layout for CFTP-2 is similar to

that of CFTP-1, with differences seen in Figure 26.

Figure 26. CFTP-2 Cabling Layout

E. TEST DESCRIPTIONS/PROCEDURES

These tests will evaluate current programs/configurations for SEU tolerance and

partial reconfiguration and provide experimental data to enhance configurations for future

radiation testing and on-orbit operation. Care will be taken to mitigate total dose

radiation damage to either experiment, which will be accomplished by limiting the total

fluence level to less than 1 kRAD for each experiment. A summary of planned

experiments are shown in Table 9.

59

Table 9. Experiment Summary

Experiment Purpose
Beam Exposure Verify proper aperture is being used for

FPGAs.
Shift Register (CFTP-1) Verify expected data and configuration SEUs

and map the configuration errors.
CORDIC-Approximate (CFTP-1) Evaluate algorithm.
CORDIC-TMR (CFTP-1) Evaluate algorithm.
Shift Register (CFTP-2) Verify expected data and configuration SEUs

and map the configuration errors.
CORDIC-Approximate (CFTP-2) Evaluate algorithm.
CORDIC-TMR (CFTP-2) Evaluate algorithm.
PIX (CFTP-2) Evaluate processor.
Additional configurations (CFTP-1 or
CFTP-2)

Evaluate alternate configurations

The power-up procedure detailed in Table 10 will be followed for all experiments.

Table 10. Power-Up Procedure

1. Turn on E3631A Power Supply (Do not connect the CFTP experiment.)
 Using the Excel plug-in on the serially connected laptop,
 Set the Voltage Limit on the 6 V source to 5 Volts
 Set the Current Limit on the 6 V source to 3 Amps
2. (For CFTP-1) Turn on the E3630A Power Supply
 Set the Voltage to 5 Volts (Be careful not to subsequently bump the voltage dial.)
3. Connect the CFTP board to the E3631A Power Supply
4. (For CFTP-1) Connect the Stack Controller to the E3630A Power Supply
 (For CFTP-2) Connect the Backplane and Hard drive to the 310 ATX Power Supply
5. Start current log and chart on laptop.
6. Simultaneously, turn E3631A Output ON (using laptop) and turn on other power
supply (use walkie talkies)
7. Monitor current for anomalies during start-up

1. Beam Exposure
Obtain a beam exposure using the 4 cm square aperture. Overlay the exposure on

top of the X2 FPGA on both CFTP boards to verify sufficient radiation coverage. Verify

multiple blank data sheets (Appendix A-2) are available in the experimenter’s area in the

South Cave.

60

2. Shift Register (CFTP-1)
Set-up CFTP-1 on the radiation target testing table. Connect all cables, except

power to the CFTP board and stack controller, according to Figure 26. Use the network

information displayed in the South Cave to set up the IP connections for the control and

interface computers, web cam, and power controller. Record IP settings using data sheet

in Appendix A-1. Then, follow the power-up procedure in Table 10. Continually

monitor current for any increase, terminating the test for any increase more than 10%

(possible indication of total dose effects). Using Putty (or other secure shell client) on the

control computer, connect to the interface computer. Load the shift register experiment

into the flash. Perform a flash dump and checkflash to confirm the flash is properly

loaded. Then, execute the shift register program. After observing proper operation of the

shift register program, close the North Cave. Log the experiment number, run and start

time on a data sheet.

Set up the beam for 63 MeV protons and start with 5 picoAmps for the desired

fluence. Irradiate the experiment and log the time. Observe the program output for SEUs

and reconfiguration. Log the time for any data errors and when reconfigurations occur.

The objective is to observe one SEU approximately every 30 seconds. If SEU occurrence

is more frequent, stop the beam and lower the current (cyclotron control). Start the

experiment over, logging information on a new data sheet. Once the beam is set at the

proper fluence, run the shift register experiment until approximately 100 SEUs are

observed. This should yield a dose of 300 rad. Ensure that the total dose does not exceed

500 rad for this experiment. Note: CFTP-1 has already received 191 rad of proton

irradiation.

After achieving the desired number of SEUs, stop the beam and log the time.

Verify the output is saved to a file for follow-on analysis. Using the SelectMap outputs

from 30 second updates and reconfigurations, determine the expected SEUs (data vs.

configuration and location {components or routing}) for the CORDIC experiments.

3. CORDIC Approximate (CFTP-1)

When ready to continue, load the CORDIC approximate experiment into the

flash. Perform a flash dump and checkflash to confirm the flash is properly loaded.

Then, execute the CORDIC approximate program. After observing proper operation of

61

the program, close the North Cave. Log the experiment number, run and start time on a

data sheet. Continually monitor current for any increase, terminating the test for any

increase more than 10%.

Set up the beam for the last setting used for the shift register experiment. Irradiate

the experiment and log the time. Observe the program output for SEUs and

reconfiguration. Log the time for any data errors and when reconfigurations occur. If

SEU occurrence is too frequent, stop the beam and lower the current (cyclotron control).

Start the experiment over, logging information on a new data sheet. Run the shift register

experiment until approximately 100 SEUs are observed. This should yield a dose of 300

rad. Ensure that the total dose does not exceed 1 krad for this experiment.

After achieving the desired number of SEUs, stop the beam and log the time.

Verify the output is saved to a file for follow-on analysis. Note the cumulative dose for

CFTP-1 to date. Using the SelectMap outputs from 30 second updates and

reconfigurations, analyze the observed SEUs (data vs. configuration and location

{components or routing}).

4. CORDIC TMR (CFTP-1)
When ready to continue, load the CORDIC TMR experiment into the flash.

Perform a flash dump and checkflash to confirm the flash is properly loaded. Then,

execute the CORDIC TMR program. After observing proper operation of the program,

close the North Cave. Log the experiment number, run and start time on a data sheet.

Continually monitor current for any increase, terminating the test for any increase more

than 10%.

Set up the beam for the last setting used for the CORDIC approximate

experiment. Irradiate the experiment and log the time. Observe the program output for

SEUs and reconfiguration. Log the time for any data errors and when reconfigurations

occur. If SEU occurrence is too frequent, stop the beam and lower the current (cyclotron

control). Start the experiment over, logging information on a new data sheet. Run the

shift register experiment until approximately 100 SEUs are observed. This should yield a

dose of 300 rad. Ensure that the total dose does not exceed 1 krad for this experiment.

62

After achieving the desired number of SEUs, stop the beam and log the time.

Verify the output is saved to a file for follow-on analysis. Note the cumulative dose for

CFTP-1 to date. Using the SelectMap outputs from 30 second updates and

reconfigurations, analyze the observed SEUs (data vs. configuration and location

{components or routing}).

5. Shift Register (CFTP-2)
Set-up CFTP-2 on the radiation target testing table. Connect all cables, except

power to the CFTP board and stack controller, according to Figure 26. Verify proper

network set-up. Then, follow the power-up procedure in Table 10. Continually monitor

current for any increase, terminating the test for any increase more than 10% (possible

indication of total dose effects). Using Putty (or other secure shell client) on the control

computer, connect to the interface computer. Load the shift register experiment (for

CFTP-2) into the flash. Perform a flash dump and checkflash to confirm the flash is

properly loaded. Then, execute the shift register program. After observing proper

operation of the shift register program, close the North Cave. Log the experiment

number, run and start time on a data sheet.

Set up the beam for the last setting used for the CORDIC TMR experiment.

Irradiate the experiment and log the time. Observe the program output for SEUs and

reconfiguration. Log the time for any data errors and when reconfigurations occur.

NOTE: Because the Virtex II FPGA is more dense (10 times the equivalent gates), it

may be more sensitive to SEUs. The objective is to observe one SEU approximately

every 30 seconds. If SEU occurrence is more frequent, stop the beam and lower the

current (cyclotron control). Start the experiment over, logging information on a new data

sheet. Once the beam is set at the proper fluence, run the shift register experiment until

approximately 100 SEUs are observed. This should yield a dose of 300 rad. Ensure that

the total dose does not exceed 500 rad for this experiment. Note: This is the first time

CFTP-2 has been irradiated.

After achieving the desired number of SEUs, stop the beam and log the time.

Verify the output is saved to a file for follow-on analysis. Using the SelectMap outputs

from 30 second updates and reconfigurations, determine the expected SEUs (data vs.

configuration and location {components or routing}) for the CORDIC experiments.

63

6. CORDIC Approximate (CFTP-2)
When ready to continue, load the CORDIC approximate (for CFTP-2) experiment

into the flash. Perform a flash dump and checkflash to confirm the flash is properly

loaded. Then, execute the CORDIC approximate program. After observing proper

operation of the program, close the North Cave. Log the experiment number, run and

start time on a data sheet. Continually monitor current for any increase, terminating the

test for any increase more than 10%.

Set up the beam for the last setting used for the shift register experiment. Irradiate

the experiment and log the time. Observe the program output for SEUs and

reconfiguration. Log the time for any data errors and when reconfigurations occur. If

SEU occurrence is too frequent, stop the beam and lower the current (cyclotron control).

Start the experiment over, logging information on a new data sheet. Run the shift register

experiment until approximately 100 SEUs are observed. This should yield a dose of 300

rad. Ensure that the total dose does not exceed 1 krad for this experiment.

After achieving the desired number of SEUs, stop the beam and log the time.

Verify the output is saved to a file for follow-on analysis. Note the cumulative dose for

CFTP-1 to date. Using the SelectMap outputs from 30 second updates and

reconfigurations, analyze the observed SEUs (data vs. configuration and location

{components or routing}).

7. CORDIC TMR (CFTP-2)
When ready to continue, load the CORDIC TMR (for CFTP-2) experiment into

the flash. Perform a flash dump and checkflash to confirm the flash is properly loaded.

Then, execute the CORDIC TMR program. After observing proper operation of the

program, close the North Cave. Log the experiment number, run and start time on a data

sheet. Continually monitor current for any increase, terminating the test for any increase

more than 10%.

Set up the beam for the last setting used for the shift register experiment. Irradiate

the experiment and log the time. Observe the program output for SEUs and

reconfiguration. Log the time for any data errors and when reconfigurations occur. If

SEU occurrence is too frequent, stop the beam and lower the current (cyclotron control).

64

Start the experiment over, logging information on a new data sheet. Run the shift register

experiment until approximately 100 SEUs are observed. This should yield a dose of 300

rad. Ensure that the total dose does not exceed 1 krad for this experiment.

After achieving the desired number of SEUs, stop the beam and log the time.

Verify the output is saved to a file for follow-on analysis. Note the cumulative dose for

CFTP-1 to date. Using the SelectMap outputs from 30 second updates and

reconfigurations, analyze the observed SEUs (data vs. configuration and location

{components or routing}).

8. PIX (CFTP-2)
When ready to continue, load the CORDIC TMR (for CFTP-2) experiment into

the flash. Perform a flash dump and checkflash to confirm the flash is properly loaded.

Then, execute the CORDIC TMR program. After observing proper operation of the

program, close the North Cave. Log the experiment number, run and start time on a data

sheet. Continually monitor current for any increase, terminating the test for any increase

more than 10%.

Set up the beam for the last setting used for the shift register experiment. Irradiate

the experiment and log the time. Observe the program output for SEUs and

reconfiguration. Log the time for any data errors and when reconfigurations occur. If

SEU occurrence is too frequent, stop the beam and lower the current (cyclotron control).

Start the experiment over, logging information on a new data sheet. Run the shift register

experiment until approximately 100 SEUs are observed. This should yield a dose of 300

rad. Ensure that the total dose does not exceed 1 krad for this experiment.

After achieving the desired number of SEUs, stop the beam and log the time.

Verify the output is saved to a file for follow-on analysis. Note the cumulative dose for

CFTP-1 to date. Using the SelectMap outputs from 30 second updates and

reconfigurations, analyze the observed SEUs (data vs. configuration and location

{components or routing}).

9. Additional Testing

Perform additional tests with new configurations or new programs for above

configurations as time allows.

65

F. TEST AGENDA
Table 11 contains the agenda for testing.

Table 11. Test Agenda

G. SHIPPING INFORMATION:

Test equipment should be sent to:

 DR PAUL MARSHALL
 CARE OF MR CARLOS CASTANEDA
 CROCKER NUCLEAR LABORATORY, UC DAVIS
 ONE SHIELDS AVENUE
 DAVIS CA 95616-8569
 (530) 752-1460 or (530)-752-4228

H. TEST SITE PERSONNEL

1. Test Director/Radiation Engineer
Paul Marshall (NASA-GSFC)
 Email: PWMarshall@aol.com
2. On-Site NPS personnel
Professor Herschel Loomis
 Email: hloomis@nps.edu
Professor Alan Ross
 Email: aross@nps.edu
LCDR James Coudeyras
 Email: jccoudey@nps.edu
LT Pete Majewicz
 Email: pmajewic@nps.edu
Tim Meehan
 Email: tjmeehan@nps.edu
Capt Josh Snodgrass
 Email: jdsnodgr@nps.edu
Mindy Surratt
 Email: mlsurrat@nps.edu

Time Mon 14 Nov Tue 15 Nov Wed 16 Nov Thu 17 Nov

0800-1600
Personnel Arrive
Set-up CFTP-1 in

North Cave

Data Analysis
Revise Test Plan
Set-up CFTP-2 in

North Cave

Data Analysis
Test Setup Personnel Depart

1600-2400

Test Shift Register
Test CORDIC
Set-up CFTP-2

Test Shift Register

Test CORDIC
Test PIX

Additional Testing

Additional Testing
Breakdown/Pack-

up

66

3. On-site NRL personnel
Doug Disabello
 Email: douglas.disabello@gmail.com
Kjell Tengesdal
 Email: tengesdal2@llnl.gov

4. Off-site NPS personnel (phone support, etc.)
David Rigmaiden
 Email: drigmaiden@nps.edu

5. Off-site additional personnel (phone support, etc.)
John Willis
 Email: john.willis@ftlsys.com

6. UC Davis Test Facility
Test Area Telephone: 530-754-9289

Facility POC:
Carlos Castaneda
 Email: Castaneda@Crocker.UCDavis.Edu

67

APPENDIX B: LAN IP ADDRESS ASSIGNMENTS

Table 12. IP Assignment Log

Davis Facility IP Addresses

Usable Static IP Addresses 169.237.209.150-169.237.209.170

Subnet Mask 255.255.255.192

Gateway/Router Address 169.237.209.190

DNS Addresses 169.237.1.250
169.237.250.250

Component Assigned IP Address
(see Usable Static IP Addresses above)

Control Laptop -

CFTP-1 Interface Laptop -

CFTP-2 Interface Laptop -

Webcam -

Power Controller -

Power Laptop -

Additional Assignments

1. Mindy Laptop -

2. -

3. -

4. -

5. -

6. -

7. -

8. -

9. -

10. -

68

THIS PAGE INTENTIONALLY LEFT BLANK

69

APPENDIX C: RADIATION TEST DATA SHEET

Table 13. Experiment Description

Exp #
1
2
3
4
5
6
7

Start Experiment 8
Start Radiation 9
Stop Radiation 10

11

1 2 4
Data Error

Reconfiguration

6 7 9
Data Error

Reconfiguration

NOTES:

Experiment Description
CFTP-V1 Shift Register (SRL)
CFTP-V1 CORDIC (approx)
CFTP-V1 CORDIC (TMR)
CFTP-V1 SRL+1
CFTP-V1 No SRL/FF only
CFTP-V2 Shift Register (SRL)
CFTP-V2 CORDIC (approx)
CFTP-V2 CORDIC (TMR)

108

CFTP-V2 PIX

CFTP-V2 No SRL/FF only

3

CFTP-V2 SRL+1

5

Experiment Number (see Table):

Run Number:

Experiment Times (Use 24-hour clock)

70

THIS PAGE INTENTIONALLY LEFT BLANK

71

APPENDIX D: CODE

Appendix D contains the VHDL code for the all shift register programs and the

top level code for X1 and all sub-modules. MATLAB code used for data analysis is also

listed in this appendix.

72

A. SHIFT REGISTER MODULE WITH SRL16E MACRO

-- filename: sr_testing.vhd
-- author: James Coudeyras (2005)
--
-- This file is the basic shift register module
-- used for X2 which will be used as the initial test
-- for proton radiation testing at UC-Davis.
--

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity sr_testing is

 generic (WIDTH : integer := 2400); -- SR length (2400 for CFTP-1)

 Port (clock : in std_logic;
 reset : in std_logic;
 ce : in std_logic;
 din : in std_logic;
 dout : out std_logic;
 sumdiff : out std_logic);

end sr_testing;

architecture sr_sequence of sr_testing is
 signal reg_a : std_logic_vector (WIDTH-1 downto 0);
 signal reg_b : std_logic_vector (WIDTH-1 downto 0);

begin

process (clock, reset)
begin
 if (reset = '1') then

 sumdiff <= '0';
 dout <= '0';

 elsif (clock'event and clock='1') then

 sumdiff <= '0';

 if ce='1' then
 reg_a <= din & reg_a(WIDTH-1 downto 1);
 reg_b <= din & reg_b(WIDTH-1 downto 1);
 end if;
-- LABEL1:
 for I in 1 to (WIDTH/16) loop
 if ((reg_a((I-1)*16) xor reg_b((I-1)*16)) = '1') then
 sumdiff <= '1';
 end if;
 end loop;

73

 dout <= reg_a(0);

 end if;

end process;

end sr_sequence;

74

B. X2 TOP LEVEL CODE

-- filename: cftp_x2_sr.vhd
-- author: James Coudeyras (2005)
--
-- This file is the top level code for X2 to generate sixteen columns
-- of the shift register and define the interface signals with X1.
-- This top level code will be used for X2 as the initial test
-- for proton radiation testing at UC-Davis.
--
-- This code is the same for all versions of the shift register.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity cftp_x2 is
 Port (
 clock : in std_logic;
 T_CE_FROM_X1_i : in std_logic;
 T_RESET_FROM_X1_i : in std_logic;
 T_BITIN_FROM_X1_i : in std_logic;
 T_DOUT_TO_X1_o : out std_logic; -- verifying LFSR output
 T_XOR_DOUT_TO_X1_o : out std_logic; -- comparing douts on X2
 T_SUMDIFF_TO_X1_o : out std_logic_vector(15 downto 0));
end cftp_x2;

architecture sr_columns of cftp_x2 is

 component sr_testing port (
 clock : in std_logic;
 reset : in std_logic;
 ce : in std_logic; -- clock enable
 din : in std_logic; -- data bit in from LFSR
 dout : out std_logic; -- data bit out to counter
 sumdiff : out std_logic := '0'); -- don't need for X1
 end component;

--REMOVE FOR SIMULATION
 component BUFG port (
 I : in std_logic;
 O : out std_logic);
 end component;

 signal s_clock_X2_i : std_logic; -- 12.5 MHz system clock w/

reset
 signal s_clock_X2 : std_logic; -- 12.5 MHz system clock w/

reset
 signal s_clock_X2_cnt : integer range 0 to 16;

 signal s_dout_o : std_logic_vector(15 downto 0);

begin

-- Divide 25 MHz clock to 12.5 MHz to meet timing constraint

75

 process (clock, T_RESET_FROM_X1_i) begin
 if (T_RESET_FROM_X1_i = '1') then
 s_clock_x2_i <= '0';
 elsif (clock'event and clock = '1') then
 if (s_clock_X2_cnt >= 1) then -- this achieves a divide by

2 clock period!!!
 s_clock_X2_i <= not s_clock_X2_i;
 s_clock_X2_cnt <= 0;
 else
 s_clock_X2_cnt <= s_clock_X2_cnt + 1;
 end if;
 end if;
 end process;
-- FOR SR implementation {END}

 gen: for i in 15 downto 0 generate
 U: entity sr_testing
-- verify broken line does not cause problems
 port map (clock => s_clock_X2, reset => T_RESET_FROM_X1_i, ce

=> T_CE_FROM_X1_i, din => T_BITIN_FROM_X1_i, dout =>
s_dout_o(i), sumdiff => T_SUMDIFF_TO_X1_o(i));

 end generate;

 process (s_clock_X2) begin
 if (clock'event and clock = '1') then
 T_DOUT_TO_X1_o <= s_dout_o(0);
 T_XOR_DOUT_TO_X1_o <= (s_dout_o(0) xor s_dout_o(1) xor

s_dout_o(2) xor s_dout_o(3) xor s_dout_o(4) xor
s_dout_o(5) xor s_dout_o(6) xor s_dout_o(7) xor
s_dout_o(8) xor s_dout_o(9) xor s_dout_o(10) xor
s_dout_o(11) xor s_dout_o(12) xor s_dout_o(13) xor
s_dout_o(14) xor s_dout_o(15)); -- '0';

 end if;
 end process;

--Clock distribution network for X2 clock
 s_clock_X2_bufg : BUFG port map (-- comment out this code only for

simulations!!!
 I => s_clock_X2_i,
 O => s_clock_x2
);

end sr_columns;

76

C. X2 SHIFT REGISTER CONSTRAINT FILE (VIRTEX I)
Pin assignments for X2

double-check all pin assignments???
these numbers derived from a Mar 2004 diagram

system clock, pin 87 on X2
NET "clock" LOC = "P87";
NET "CLOCK" PERIOD = 40; # Why specify the clock period???
NET "s_clock" PERIOD = 80;
the line above gave errors during "Translate"???

signals to/from X1
NET "T_BITIN_FROM_X1_i" LOC = "p132"; # X1_X2_AUX<0>
NET "T_CE_FROM_X1_i" LOC = "p134"; # X1_X2_AUX<1>
NET "T_RESET_FROM_X1_i" LOC = "p135"; # X1_X2_AUX<2>
NET "XXX" LOC = "p136"; # X1_X2_AUX<3>
NET "XXX" LOC = "p138"; # X1_X2_AUX<4>
NET "XXX" LOC = "p139"; # X1_X2_AUX<5>
NET "XXX" LOC = "p141"; # X1_X2_AUX<6>
NET "XXX" LOC = "p144"; # X1_X2_AUX<7>
NET "XXX" LOC = "p146"; # X1_X2_AUX<8>
NET "XXX" LOC = "p147"; # X1_X2_AUX<9>
NET "T_SUMDIFF_TO_X1_o<0>" LOC = "p153"; # X1_X2_AUX<10>
NET "T_DOUT_TO_X1_o" LOC = "p154"; # X1_X2_AUX<11>
NET "T_SUMDIFF_TO_X1_o<1>" LOC = "p159"; # X1_X2_AUX<12>
NET "T_XOR_DOUT_TO_X1_o" LOC = "p160"; # X1_X2_AUX<13>
NET "T_SUMDIFF_TO_X1_o<2>" LOC = "p161"; # X1_X2_AUX<14>
#NET "T_DOUT_TO_X1_o<2>" LOC = "p177"; # X1_X2_AUX<15>
NET "T_SUMDIFF_TO_X1_o<3>" LOC = "p178"; # X1_X2_AUX<16>
#NET "T_DOUT_TO_X1_o<3>" LOC = "p179"; # X1_X2_AUX<17>
NET "T_SUMDIFF_TO_X1_o<4>" LOC = "p181"; # X1_X2_AUX<18>
#NET "T_DOUT_TO_X1_o<4>" LOC = "p182"; # X1_X2_AUX<19>
NET "T_SUMDIFF_TO_X1_o<5>" LOC = "p183"; # X1_X2_AUX<20>
#NET "T_DOUT_TO_X1_o<5>" LOC = "p184"; # X1_X2_AUX<21>
NET "T_SUMDIFF_TO_X1_o<6>" LOC = "p185"; # X1_X2_AUX<22>
#NET "T_DOUT_TO_X1_o<6>" LOC = "p188"; # X1_X2_AUX<23>
NET "T_SUMDIFF_TO_X1_o<7>" LOC = "p189"; # X1_X2_AUX<24>
#NET "T_DOUT_TO_X1_o<7>" LOC = "p190"; # X1_X2_AUX<25>
NET "T_SUMDIFF_TO_X1_o<8>" LOC = "p192"; # X1_X2_AUX<26>
#NET "T_DOUT_TO_X1_o<8>" LOC = "p193"; # X1_X2_AUX<27>
NET "T_SUMDIFF_TO_X1_o<9>" LOC = "p194"; # X1_X2_AUX<28>
#NET "T_DOUT_TO_X1_o<9>" LOC = "p195"; # X1_X2_AUX<29>
NET "T_SUMDIFF_TO_X1_o<10>" LOC = "p196"; # X1_X2_AUX<30>
#NET "T_DOUT_TO_X1_o<10>" LOC = "p197"; # X1_X2_AUX<31>
NET "T_SUMDIFF_TO_X1_o<11>" LOC = "p198"; # X1_X2_AUX<32>
#NET "T_DOUT_TO_X1_o<11>" LOC = "p204"; # X1_X2_AUX<33>
NET "T_SUMDIFF_TO_X1_o<12>" LOC = "p205"; # X1_X2_AUX<34>
#NET "T_DOUT_TO_X1_o<12>" LOC = "p206"; # X1_X2_AUX<35>
NET "T_SUMDIFF_TO_X1_o<13>" LOC = "p207"; # X1_X2_AUX<36>
#NET "T_DOUT_TO_X1_o<13>" LOC = "p208"; # X1_X2_AUX<37>
NET "T_SUMDIFF_TO_X1_o<14>" LOC = "p209"; # X1_X2_AUX<38>
#NET "T_DOUT_TO_X1_o<14>" LOC = "p211"; # X1_X2_AUX<39>
NET "T_SUMDIFF_TO_X1_o<15>" LOC = "p212"; # X1_X2_AUX<40>
#NET "T_DOUT_TO_X1_o<15>" LOC = "p213"; # X1_X2_AUX<41>

77

NET "XXX" LOC = "p216"; # X1_X2_AUX<42>
NET "XXX" LOC = "p217"; # X1_X2_AUX<43>
NET "XXX" LOC = "p218"; # X1_X2_AUX<44>

Start of Constraints extracted by Floorplanner from the Design
INST "U15_*" AREA_GROUP = "cftp_x2_sr_15" ;
AREA_GROUP "cftp_x2_sr_15" RANGE = CLB_R1C1:CLB_R48C4 ;
INST "U14_*" AREA_GROUP = "cftp_x2_sr_14" ;
AREA_GROUP "cftp_x2_sr_14" RANGE = CLB_R1C6:CLB_R48C9 ;
INST "U13_*" AREA_GROUP = "cftp_x2_sr_13" ;
AREA_GROUP "cftp_x2_sr_13" RANGE = CLB_R1C10:CLB_R48C13 ;
INST "U12_*" AREA_GROUP = "cftp_x2_sr_12" ;
AREA_GROUP "cftp_x2_sr_12" RANGE = CLB_R1C15:CLB_R48C18 ;
INST "U11_*" AREA_GROUP = "cftp_x2_sr_11" ;
AREA_GROUP "cftp_x2_sr_11" RANGE = CLB_R1C19:CLB_R48C22 ;
INST "U10_*" AREA_GROUP = "cftp_x2_sr_10" ;
AREA_GROUP "cftp_x2_sr_10" RANGE = CLB_R1C24:CLB_R48C27 ;
INST "U9_*" AREA_GROUP = "cftp_x2_sr_9" ;
AREA_GROUP "cftp_x2_sr_9" RANGE = CLB_R1C28:CLB_R48C31 ;
INST "U8_*" AREA_GROUP = "cftp_x2_sr_8" ;
AREA_GROUP "cftp_x2_sr_8" RANGE = CLB_R1C33:CLB_R48C36 ;
INST "U7_*" AREA_GROUP = "cftp_x2_sr_7" ;
AREA_GROUP "cftp_x2_sr_7" RANGE = CLB_R1C37:CLB_R48C40 ;
INST "U6_*" AREA_GROUP = "cftp_x2_sr_6" ;
AREA_GROUP "cftp_x2_sr_6" RANGE = CLB_R1C42:CLB_R48C45 ;
INST "U5_*" AREA_GROUP = "cftp_x2_sr_5" ;
AREA_GROUP "cftp_x2_sr_5" RANGE = CLB_R1C46:CLB_R48C49 ;
INST "U4_*" AREA_GROUP = "cftp_x2_sr_4" ;
AREA_GROUP "cftp_x2_sr_4" RANGE = CLB_R1C51:CLB_R48C54 ;
INST "U3_*" AREA_GROUP = "cftp_x2_sr_3" ;
AREA_GROUP "cftp_x2_sr_3" RANGE = CLB_R1C55:CLB_R48C58 ;
INST "U2_*" AREA_GROUP = "cftp_x2_sr_2" ;
AREA_GROUP "cftp_x2_sr_2" RANGE = CLB_R1C60:CLB_R48C63 ;
INST "U1_*" AREA_GROUP = "cftp_x2_sr_1" ;
AREA_GROUP "cftp_x2_sr_1" RANGE = CLB_R1C64:CLB_R48C67 ;
INST "U0_*" AREA_GROUP = "cftp_x2_sr_0" ;
AREA_GROUP "cftp_x2_sr_0" RANGE = CLB_R1C69:CLB_R48C72 ;
AREA_GROUP "sr_sample_2" RANGE = RAMB4_R0C0:RAMB4_R4C0 ; # No RAMB4

used here!!!

78

D. X2 SHIFT REGISTER CONSTRAINT FILE (VIRTEX II)
Pin assignments for X2

double-check all pin assignments???
these numbers derived from a Mar 2004 diagram

system clock, pin 87 on X2
NET "clock" LOC = "P87";
NET "CLOCK" PERIOD = 40; # Why specify the clock period???
NET "s_clock" PERIOD = 80;
the line above gave errors during "Translate"???

signals to/from X1
NET "T_BITIN_FROM_X1_i" LOC = "p132"; # X1_X2_AUX<0>
NET "T_CE_FROM_X1_i" LOC = "p134"; # X1_X2_AUX<1>
NET "T_RESET_FROM_X1_i" LOC = "p135"; # X1_X2_AUX<2>
NET "XXX" LOC = "p136"; # X1_X2_AUX<3>
NET "XXX" LOC = "p138"; # X1_X2_AUX<4>
NET "XXX" LOC = "p139"; # X1_X2_AUX<5>
NET "XXX" LOC = "p141"; # X1_X2_AUX<6>
NET "XXX" LOC = "p144"; # X1_X2_AUX<7>
NET "XXX" LOC = "p146"; # X1_X2_AUX<8>
NET "XXX" LOC = "p147"; # X1_X2_AUX<9>
NET "T_SUMDIFF_TO_X1_o<0>" LOC = "p153"; # X1_X2_AUX<10>
NET "T_DOUT_TO_X1_o" LOC = "p154"; # X1_X2_AUX<11>
NET "T_SUMDIFF_TO_X1_o<1>" LOC = "p159"; # X1_X2_AUX<12>
NET "T_XOR_DOUT_TO_X1_o" LOC = "p160"; # X1_X2_AUX<13>
NET "T_SUMDIFF_TO_X1_o<2>" LOC = "p161"; # X1_X2_AUX<14>
#NET "T_DOUT_TO_X1_o<2>" LOC = "p177"; # X1_X2_AUX<15>
NET "T_SUMDIFF_TO_X1_o<3>" LOC = "p178"; # X1_X2_AUX<16>
#NET "T_DOUT_TO_X1_o<3>" LOC = "p179"; # X1_X2_AUX<17>
NET "T_SUMDIFF_TO_X1_o<4>" LOC = "p181"; # X1_X2_AUX<18>
#NET "T_DOUT_TO_X1_o<4>" LOC = "p182"; # X1_X2_AUX<19>
NET "T_SUMDIFF_TO_X1_o<5>" LOC = "p183"; # X1_X2_AUX<20>
#NET "T_DOUT_TO_X1_o<5>" LOC = "p184"; # X1_X2_AUX<21>
NET "T_SUMDIFF_TO_X1_o<6>" LOC = "p185"; # X1_X2_AUX<22>
#NET "T_DOUT_TO_X1_o<6>" LOC = "p188"; # X1_X2_AUX<23>
NET "T_SUMDIFF_TO_X1_o<7>" LOC = "p189"; # X1_X2_AUX<24>
#NET "T_DOUT_TO_X1_o<7>" LOC = "p190"; # X1_X2_AUX<25>
NET "T_SUMDIFF_TO_X1_o<8>" LOC = "p192"; # X1_X2_AUX<26>
#NET "T_DOUT_TO_X1_o<8>" LOC = "p193"; # X1_X2_AUX<27>
NET "T_SUMDIFF_TO_X1_o<9>" LOC = "p194"; # X1_X2_AUX<28>
#NET "T_DOUT_TO_X1_o<9>" LOC = "p195"; # X1_X2_AUX<29>
NET "T_SUMDIFF_TO_X1_o<10>" LOC = "p196"; # X1_X2_AUX<30>
#NET "T_DOUT_TO_X1_o<10>" LOC = "p197"; # X1_X2_AUX<31>
NET "T_SUMDIFF_TO_X1_o<11>" LOC = "p198"; # X1_X2_AUX<32>
#NET "T_DOUT_TO_X1_o<11>" LOC = "p204"; # X1_X2_AUX<33>
NET "T_SUMDIFF_TO_X1_o<12>" LOC = "p205"; # X1_X2_AUX<34>
#NET "T_DOUT_TO_X1_o<12>" LOC = "p206"; # X1_X2_AUX<35>
NET "T_SUMDIFF_TO_X1_o<13>" LOC = "p207"; # X1_X2_AUX<36>
#NET "T_DOUT_TO_X1_o<13>" LOC = "p208"; # X1_X2_AUX<37>
NET "T_SUMDIFF_TO_X1_o<14>" LOC = "p209"; # X1_X2_AUX<38>
#NET "T_DOUT_TO_X1_o<14>" LOC = "p211"; # X1_X2_AUX<39>
NET "T_SUMDIFF_TO_X1_o<15>" LOC = "p212"; # X1_X2_AUX<40>
#NET "T_DOUT_TO_X1_o<15>" LOC = "p213"; # X1_X2_AUX<41>

79

NET "XXX" LOC = "p216"; # X1_X2_AUX<42>
NET "XXX" LOC = "p217"; # X1_X2_AUX<43>
NET "XXX" LOC = "p218"; # X1_X2_AUX<44>

Start of Constraints extracted by Floorplanner from the Design
INST "U15_*" AREA_GROUP = "cftp_x2_sr_15" ;
AREA_GROUP "cftp_x2_sr_15" RANGE = CLB_R1C1:CLB_R48C4 ;
INST "U14_*" AREA_GROUP = "cftp_x2_sr_14" ;
AREA_GROUP "cftp_x2_sr_14" RANGE = CLB_R1C6:CLB_R48C9 ;
INST "U13_*" AREA_GROUP = "cftp_x2_sr_13" ;
AREA_GROUP "cftp_x2_sr_13" RANGE = CLB_R1C10:CLB_R48C13 ;
INST "U12_*" AREA_GROUP = "cftp_x2_sr_12" ;
AREA_GROUP "cftp_x2_sr_12" RANGE = CLB_R1C15:CLB_R48C18 ;
INST "U11_*" AREA_GROUP = "cftp_x2_sr_11" ;
AREA_GROUP "cftp_x2_sr_11" RANGE = CLB_R1C19:CLB_R48C22 ;
INST "U10_*" AREA_GROUP = "cftp_x2_sr_10" ;
AREA_GROUP "cftp_x2_sr_10" RANGE = CLB_R1C24:CLB_R48C27 ;
INST "U9_*" AREA_GROUP = "cftp_x2_sr_9" ;
AREA_GROUP "cftp_x2_sr_9" RANGE = CLB_R1C28:CLB_R48C31 ;
INST "U8_*" AREA_GROUP = "cftp_x2_sr_8" ;
AREA_GROUP "cftp_x2_sr_8" RANGE = CLB_R1C33:CLB_R48C36 ;
INST "U7_*" AREA_GROUP = "cftp_x2_sr_7" ;
AREA_GROUP "cftp_x2_sr_7" RANGE = CLB_R1C37:CLB_R48C40 ;
INST "U6_*" AREA_GROUP = "cftp_x2_sr_6" ;
AREA_GROUP "cftp_x2_sr_6" RANGE = CLB_R1C42:CLB_R48C45 ;
INST "U5_*" AREA_GROUP = "cftp_x2_sr_5" ;
AREA_GROUP "cftp_x2_sr_5" RANGE = CLB_R1C46:CLB_R48C49 ;
INST "U4_*" AREA_GROUP = "cftp_x2_sr_4" ;
AREA_GROUP "cftp_x2_sr_4" RANGE = CLB_R1C51:CLB_R48C54 ;
INST "U3_*" AREA_GROUP = "cftp_x2_sr_3" ;
AREA_GROUP "cftp_x2_sr_3" RANGE = CLB_R1C55:CLB_R48C58 ;
INST "U2_*" AREA_GROUP = "cftp_x2_sr_2" ;
AREA_GROUP "cftp_x2_sr_2" RANGE = CLB_R1C60:CLB_R48C63 ;
INST "U1_*" AREA_GROUP = "cftp_x2_sr_1" ;
AREA_GROUP "cftp_x2_sr_1" RANGE = CLB_R1C64:CLB_R48C67 ;
INST "U0_*" AREA_GROUP = "cftp_x2_sr_0" ;
AREA_GROUP "cftp_x2_sr_0" RANGE = CLB_R1C69:CLB_R48C72 ;
AREA_GROUP "sr_sample_2" RANGE = RAMB4_R0C0:RAMB4_R4C0 ; # No RAMB4

used here!!!

80

E. X1 SELECTMAP CONFIGURATION CODE
(From [17])

-- selectmap_config.vhd --
-- Author: Mindy Surratt, 2005 --
-- Research Associate, Naval Postgraduate School, Monterey, CA --
-- --
-- Code to perform a selectmap full configuration on the V1 --
-- experiment FPGA --

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use IEEE.std_logic_unsigned.all;
use IEEE.std_logic_arith.all;

entity selectmap_config is

 port (

 T_CLOCK_i : in std_logic;
 RESET_i : in std_logic;

 T_SELECTMAP_INIT_o : out std_logic;
 T_SELECTMAP_WRITE_o : out std_logic;
 T_SELECTMAP_CS_o : out std_logic;
 T_SELECTMAP_DATA_o : out std_logic_vector(7 downto 0);

 SM_CONFIG_RQST_i : in std_logic;
 SM_CONFIG_STATUS_o : out std_logic;

 T_FLASH_DATA_i : in std_logic_vector(15 downto 0);
 T_FLASH_ADDRESS_o : out std_logic_vector(21 downto 0);

 PC104_WR_RDY_i : in std_logic;
 PC104_WR_EN_o : out std_logic;
 DATA_o : out std_logic_vector(7 downto 0)

);

end selectmap_config;

architecture rtl of selectmap_config is

CONSTANT BIN_LENGTH : integer := 450996; --SIMULATION 20;
CONSTANT CONFIG_DELAY : integer := 4000; --SIMULATION 10;
CONSTANT ABORT_SETUP_LENGTH : integer := 5;
CONSTANT ABORT_LENGTH : integer := 5;
CONSTANT ABORT_RELEASE_LENGTH : integer := 5;
CONSTANT CONFIG_LENGTH : integer := CONFIG_DELAY + BIN_LENGTH

+
 ABORT_SETUP_LENGTH +
 ABORT_LENGTH +
 ABORT_RELEASE_LENGTH;

81

signal count_config : integer range 0 to CONFIG_LENGTH ;
signal byte_count : integer range 0 to 100;
signal byte1 : std_logic;
signal byte2 : std_logic;
signal s_flash_address_o : std_logic_vector(20 downto 0);

begin

-- only one flash device on CFTP-1, so only 21 addr lines (addr(21) =

'0')
T_FLASH_ADDRESS_o(21) <= '0';
T_FLASH_ADDRESS_o(20 downto 0) <= s_flash_address_o;

-- Selectmap Configuration Process
process(T_CLOCK_i, RESET_i)
begin
 if (RESET_i = '1') then

 s_flash_address_o <= "000000000000000000000";

 SM_CONFIG_STATUS_o <= '0';

 T_SELECTMAP_DATA_o <= x"00";

 T_SELECTMAP_INIT_o <= '0';
 T_SELECTMAP_WRITE_o <= '1';
 T_SELECTMAP_CS_o <= '1';

 byte1 <= '0';
 byte2 <= '0';
 PC104_WR_EN_o <= '0';

 count_config <= CONFIG_LENGTH;

 elsif(T_CLOCK_i'event and T_CLOCK_i = '1') then

 T_SELECTMAP_INIT_o <= '1';
 T_SELECTMAP_CS_o <= '1';
 T_SELECTMAP_WRITE_o <= '1';
 PC104_WR_EN_o <= '0';

 if (count_config = 0) then
 if (PC104_WR_RDY_i = '1') then
 -- Write 'S' to PC104
 if (byte1 = '0') then
 DATA_o <= x"53";
 PC104_WR_EN_o <= '1';
 byte1 <= '1';
 -- Write 'C' to PC104
 else
 DATA_o <= x"43";
 PC104_WR_EN_o <= '1';
 byte2 <= '1';
 end if;
 end if;
 if (byte2 = '1') then

82

 count_config <= 1;
 byte1 <= '0';
 byte2 <= '0';
 end if;

 -- give it some time
 elsif (count_config < CONFIG_DELAY) then
 count_config <= count_config + 1;

 -- assert write and CS
 elsif (count_config < CONFIG_DELAY + ABORT_SETUP_LENGTH) then
 count_config <= count_config + 1;
 T_SELECTMAP_CS_o <= '0';
 T_SELECTMAP_WRITE_o <= '0';

 -- deassert write while CS is asserted (pulls an abort)
 elsif (count_config < CONFIG_DELAY + ABORT_SETUP_LENGTH +

ABORT_LENGTH) then
 count_config <= count_config + 1;
 T_SELECTMAP_CS_o <= '0';
 T_SELECTMAP_WRITE_o <= '1';

 -- Just deassert WRITE and CS to release the abort (for Virtex

1)
 -- (Default values of WRITE and CS are '1', see above)
 elsif (count_config < CONFIG_DELAY + ABORT_SETUP_LENGTH +
 ABORT_LENGTH + ABORT_RELEASE_LENGTH)

then
 count_config <= count_config + 1;

 -- read data from flash and write to X2s selectmap interface
 elsif (count_config < CONFIG_LENGTH) then
 byte_count <= byte_count + 1;

 --T_SELECTMAP_DATA_io0 is the MSB (except I swapped values

in UCF
 --so in this instance D7 is MSB...)
 -- disabled bit flipping in promgen (default is to flip

bits in
 -- each byte), so T_SELECTMAP_DATA_o<=t_flash_data instead

of
 -- having to reverse the bits (7=0, 6=1, etc)

 -- takes some time to read from the flash (possibly less

than
 -- I'm allowing for...
 if (byte_count = 6) then
 T_SELECTMAP_CS_o <= '0';
 T_SELECTMAP_WRITE_o <= '0';
 T_SELECTMAP_DATA_o <= T_FLASH_DATA_i(7 downto 0);
 count_config <= count_config + 1;
 byte_count <= 0;
 s_flash_address_o <= s_flash_address_o + 1;
 end if;

 -- sit here until we get a config request from the top level
 elsif (count_config = CONFIG_LENGTH) then

83

 count_config <= CONFIG_LENGTH;
 SM_CONFIG_STATUS_o <= '0';
 --reset flash address
 s_flash_address_o <= "000000000000000000000";
 if (SM_CONFIG_RQST_i = '1') then
 count_config <= 0;
 SM_CONFIG_STATUS_o <= '1';
 end if;

 end if;

 end if;

end process;

end rtl;

84

F. X1 SELECTMAP READBACK CODE

-- selectmap_readback.vhd --
-- Author: Mindy Surratt, 2005 --
-- Research Associate, Naval Postgraduate School, Monterey, CA --
-- --
-- Code to perform a selectmap readback on the experiment FPGA, --
-- compare the readback data with the configuration file and mask --
-- file stored in the Flash memory, and output any configuration --
-- errors to the PC/104 --

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use IEEE.std_logic_unsigned.all;
use IEEE.std_logic_arith.all;

entity selectmap_readback is
 port (

 T_CLOCK_i : in std_logic;
 CLOCK_i : in std_logic;
 CLOCK_NOBUFG_i : in std_logic;
 RESET_i : in std_logic;

 T_CCLK_o : out std_logic;
 T_SELECTMAP_INIT_o : out std_logic;
 T_SELECTMAP_WRITE_o : out std_logic;
 T_SELECTMAP_CS_o : out std_logic;
 T_SELECTMAP_DATA_o : out std_logic_vector(7 downto 0);
 T_SELECTMAP_DATA_i : in std_logic_vector(7 downto 0);

 SM_RB_RQST_i : in std_logic;
 SM_RB_STATUS_o : out std_logic;

 T_FLASH_DATA_i : in std_logic_vector(15 downto 0);
 T_FLASH_ADDRESS_o : out std_logic_vector(21 downto 0);

 PC104_WR_RDY_i : in std_logic;
 PC104_WR_EN_o : out std_logic;
 DATA_o : out std_logic_vector(7 downto 0)

);
end selectmap_readback;

architecture rtl of selectmap_readback is

-- Constants

 CONSTANT READBACK_COMMAND_LENGTH : integer := 36;
 -- CLB_LENGTH refers to CLBs, IOBs, and BRAMIs. We do not read back

BRAMs
 CONSTANT CLB_LENGTH : integer := 435240; --

SIMULATION 130;

85

 CONSTANT READBACK_DELAY : integer := 4000; --SIMULATION
10;

 CONSTANT READBACK_INIT1_DELAY : integer := 1;
 CONSTANT READBACK_INIT2_DELAY : integer := 1; -- DO NOT

CHANGE THIS!
 -- Number of clocks needed to set up readback (before we actually

start
 -- getting data)
 CONSTANT READBACK_OFFSET : integer :=

READBACK_COMMAND_LENGTH +
 READBACK_DELAY

+

READBACK_INIT1_DELAY +

READBACK_INIT2_DELAY;
 CONSTANT READBACK_LENGTH : integer := CLB_LENGTH +

READBACK_OFFSET;

 signal s_clock_i : std_logic;

-- Flash compare/report signals

 type my_state is (sleep_st,read_flash_st,wr_hdr_1_st,wr_hdr_2_st,
 read_sm_st, wait_st, compare_st,

write_pc104_st);
 type error_vector is array(15 downto 0) of std_logic_vector(7

downto 0);

 signal report_error_state : my_state;
 signal error_word : error_vector;

 signal flash_data_reg : std_logic_vector(15 downto 0);
 signal s_flash_address_o : std_logic_vector(20 downto 0);
 signal error_count : integer range 0 to 1024;
 signal error_location : std_logic_vector (23 downto 0);
 signal error_location_readback : std_logic_vector (23 downto 0);
 signal wr_cnt : integer range 0 to 32;

-- Selectmap Readback signals

 type readback_mem_type is array(READBACK_COMMAND_LENGTH-1 downto

0)
 of std_logic_vector(7 downto 0);

 signal readback_command : readback_mem_type;
 signal count_readback : integer range 0 to 1024000;
 signal strt_rb : std_logic;
 signal s_selectmap_data_d : std_logic_vector(7 downto 0);
 signal s_selectmap_data_i : std_logic_vector(7 downto 0);
 signal reading_sm_data : std_logic;
 signal reading_sm_data_d : std_logic;
 signal readback_location : integer range 0 to 1024000;

 signal selectmap_read_data : std_logic_vector(7 downto 0);

86

begin

 -- Clocking CCLK only works if we use a signal that is not on the
 -- clock network
 process (T_CLOCK_i) begin
 if (T_CLOCK_i'event and T_CLOCK_i = '1') then
 s_clock_i <= not s_clock_i;
 end if;
 end process;

 -- Command sequence that initializes a selectmap readback
 readback_command(0)(7 downto 0) <= x"FF"; --MSB dummy word
 readback_command(1)(7 downto 0) <= x"FF";
 readback_command(2)(7 downto 0) <= x"FF";
 readback_command(3)(7 downto 0) <= x"FF";
 readback_command(4)(7 downto 0) <= x"AA"; --MSB synchronization

word
 readback_command(5)(7 downto 0) <= x"99";
 readback_command(6)(7 downto 0) <= x"55";
 readback_command(7)(7 downto 0) <= x"66";
 readback_command(8)(7 downto 0) <= x"30"; --MSB write 1 word to FAR

reg
 readback_command(9)(7 downto 0) <= x"00";
 readback_command(10)(7 downto 0) <= x"20";
 readback_command(11)(7 downto 0) <= x"01";
 readback_command(12)(7 downto 0) <= x"00"; --MSB FAR address
 readback_command(13)(7 downto 0) <= x"00";
 readback_command(14)(7 downto 0) <= x"00";
 readback_command(15)(7 downto 0) <= x"00";
 readback_command(16)(7 downto 0) <= x"30"; --MSB write 1 word to

CMD reg
 readback_command(17)(7 downto 0) <= x"00";
 readback_command(18)(7 downto 0) <= x"80";
 readback_command(19)(7 downto 0) <= x"01";
 readback_command(20)(7 downto 0) <= x"00"; --MSB RCFG command
 readback_command(21)(7 downto 0) <= x"00";
 readback_command(22)(7 downto 0) <= x"00";
 readback_command(23)(7 downto 0) <= x"04";
 readback_command(24)(7 downto 0) <= x"28"; --MSB type 2 header
 readback_command(25)(7 downto 0) <= x"00";
 readback_command(26)(7 downto 0) <= x"60";
 readback_command(27)(7 downto 0) <= x"00";
 readback_command(28)(7 downto 0) <= x"48"; --type 2 read from

active reg
 readback_command(29)(7 downto 0) <= x"01"; --(FDRO) 0x1A90A 32 bit

words
 readback_command(30)(7 downto 0) <= x"A9"; -- (READBACK_LENGTH/4)
 readback_command(31)(7 downto 0) <= x"0A";
 readback_command(32)(7 downto 0) <= x"00"; --MSB pad word
 readback_command(33)(7 downto 0) <= x"00";
 readback_command(34)(7 downto 0) <= x"00";
 readback_command(35)(7 downto 0) <= x"00";

87

 -- grabs selectmap data on the next read_sm_st,
 -- the first byte read back will be junk (no data yet)
 T_CCLK_o <= '1' when reading_sm_data = '1'
 and report_error_state /=

read_sm_st
 else s_clock_i;
 s_selectmap_data_i <= T_SELECTMAP_DATA_i;

 -- only one flash device on CFTP-1, so only 21 addr lines (addr(21)

= '0')
 T_FLASH_ADDRESS_o(21) <= '0';
 T_FLASH_ADDRESS_o(20 downto 0) <= s_flash_address_o;

 readback_location <= 0 when count_readback < READBACK_OFFSET
 else (count_readback - READBACK_OFFSET);

 process(CLOCK_i,RESET_i)
 begin
 if (RESET_i = '1') then

 report_error_state <= sleep_st;
 error_count <= 0;
 wr_cnt <= 0;

 PC104_WR_EN_o <= '0';
 DATA_o <= x"31";

 elsif (CLOCK_i'event and CLOCK_i = '1') then

 PC104_WR_EN_o <= '0';
 report_error_state <= report_error_state;

 case report_error_state is

 when sleep_st =>

 -- set flash address to just after the selectmap
 -- configuration commands in the bin file
 s_flash_address_o <= "000000000000001001000";
 -- wait until we start actually reading SM data
 -- then start the readback reports
 if (reading_sm_data = '1') then
 report_error_state <= wr_hdr_1_st;
 end if;

 when wr_hdr_1_st =>

 -- Write 'S' to PC104
 if (PC104_WR_RDY_i='1') then
 DATA_o <= x"53"; --S
 PC104_WR_EN_o <= '1';
 report_error_state <= wr_hdr_2_st;
 end if;

 when wr_hdr_2_st =>

 -- Write 'M' to PC104

88

 if (PC104_WR_RDY_i='1') then
 DATA_o <= x"4D"; --M
 PC104_WR_EN_o <= '1';
 report_error_state <= read_flash_st;
 end if;

 when read_flash_st =>

 report_error_state <= read_sm_st;

 -- Go idle if we are done reading back
 if (reading_sm_data = '0') then
 report_error_state <= sleep_st;
 end if;

 when read_sm_st =>

 -- latch the selectmap data from the last read,
 -- and trigger CCLK to get the next byte (see

T_CCLK_o
 -- assignment above)
 selectmap_read_data <= s_selectmap_data_i;
 report_error_state <= wait_st;

 when wait_st =>

 -- Skip first junk byte (see CCLK above), 1 dummy

word,
 -- and one pad frame (120 bytes)
 if (readback_location < 125) then
 report_error_state <= read_sm_st;
 else
 report_error_state <= compare_st;
 end if;

 when compare_st =>

 -- latch flash data for possible report to PC104
 flash_data_reg <= T_FLASH_DATA_i;
 -- increment the flash address for the next read
 s_flash_address_o <= s_flash_address_o + 1;

 -- Compare read back selectmap data, configuration

data
 -- stored in the flash, and mask data stored in the

flash.
 -- If there is a mismatch, print a report to

PC/104.
 -- Otherwise, read the next byte
 if (((T_FLASH_DATA_i(7 downto 0) xor

selectmap_read_data)
 and not T_FLASH_DATA_i(15 downto 8)) /= x"00"

) then
 report_error_state <= write_pc104_st;
 else
 report_error_state <= read_flash_st;
 end if;

89

 when write_pc104_st =>

 -- print out SM report
 -- error_word() defined below
 if (wr_cnt < 7 and PC104_WR_RDY_i = '1') then
 DATA_o <= error_word(wr_cnt);
 PC104_WR_EN_o <= '1';
 wr_cnt <= wr_cnt + 1;
 -- read next byte from selectmap when done
 elsif (wr_cnt = 7) then
 report_error_state <= read_flash_st;
 wr_cnt <= 0;
 end if;

 when others => report_error_state <= sleep_st;
 end case;
 end if;

 end process;

 error_location <= "000" & (s_flash_address_o - 1) ;
 error_location_readback <=
 std_logic_vector(to_unsigned(readback_location,24));

 -- SMRB error report, error location is byte location within
 -- bin file
 error_word(0) <= x"00";
 error_word(1) <= selectmap_read_data ;
 error_word(2) <= error_location(23 downto 16);
 error_word(3) <= error_location(15 downto 8);
 error_word(4) <= error_location(7 downto 0);
 error_word(5) <= flash_data_reg(7 downto 0);
 error_word(6) <= flash_data_reg(15 downto 8);

 -- Process to perform Selectmap Readback
 process(CLOCK_i,RESET_i)
 begin
 if (RESET_i = '1') then

 T_SELECTMAP_INIT_o <= '1';
 T_SELECTMAP_WRITE_o <= '1';
 T_SELECTMAP_CS_o <= '1';

 count_readback <= READBACK_LENGTH;
 SM_RB_STATUS_o <= '0';
 reading_sm_data <= '0';
 reading_sm_data_d <= '0';

 s_selectmap_data_d <= x"FF";

 strt_rb <= '0';

 T_SELECTMAP_DATA_o <= x"FF";

 elsif(CLOCK_i'event and CLOCK_i = '1') then

90

 T_SELECTMAP_INIT_o <= '1';
 T_SELECTMAP_CS_o <= '1';
 T_SELECTMAP_WRITE_o <= '1';

 reading_sm_data <= '0';
 reading_sm_data_d <= reading_sm_data;

 -- Give it some time
 if (count_readback < READBACK_DELAY) then
 count_readback <= count_readback + 1;

 -- Write the readback commands to X2s selectmap interface
 elsif (count_readback < READBACK_COMMAND_LENGTH +
 READBACK_DELAY) then
 T_SELECTMAP_CS_o <= '0';
 T_SELECTMAP_WRITE_o <= '0';
 T_SELECTMAP_DATA_o <=
 readback_command(count_readback -

READBACK_DELAY);
 count_readback <= count_readback + 1;

 --INITialize readback (deassert CS and WRITE)
 elsif (count_readback < READBACK_COMMAND_LENGTH +

READBACK_DELAY +
 READBACK_INIT1_DELAY) then
 T_SELECTMAP_CS_o <= '1';
 T_SELECTMAP_WRITE_o <= '1';
 count_readback <= count_readback + 1;

 -- INITialize readback (assert CS)
 elsif (count_readback < READBACK_OFFSET) then
 T_SELECTMAP_CS_o <= '0';
 T_SELECTMAP_WRITE_o <= '1';
 count_readback <= count_readback + 1;

 -- read back the configuration data from X2
 elsif ((count_readback < (READBACK_LENGTH))) then

 T_SELECTMAP_CS_o <= '0';
 T_SELECTMAP_WRITE_o <= '1';
 reading_sm_data <= '1';
 -- data_d will be FF until second clock in this

statement
 -- this prevents SM readback from hanging on the next

statement
 -- if there happen to be no FFs at the beginning
 s_selectmap_data_d <= s_selectmap_data_i;

 -- Skip all dummy FF data coming out of the selectmap

interface
 -- at the beginning
 if (s_selectmap_data_i /= x"FF" and
 s_selectmap_data_d = x"FF") then
 strt_rb <= '1';
 end if;

91

 -- Don't increment the readback counter unless we've
cleared out

 -- all the dummy FF's (strt_rb = '1') and we we are
latching

 -- the selectmap data in the read_sm_st of the state
machine

 -- CCLK is clocked off of read_sm_st as well, so every
time

 -- we are in read_sm_st, another byte of selectmap data
is

 -- clocked out, and we grab it the next time we're in
read_sm_st

 -- we only want to increment the counter when we
actually

 -- grab a selectmap readback byte
 if (report_error_state = read_sm_st and strt_rb = '1')

then
 count_readback <= count_readback + 1;
 end if;

 -- sit here until we get a readback request from top level
 elsif (count_readback = READBACK_LENGTH) then
 count_readback <= READBACK_LENGTH;
 SM_RB_STATUS_o <= '0';
 strt_rb <= '0';
 -- Make sure this starts out as FF so we will start the

readback
 -- even if there are no dummy FF's at the beginning of

the
 -- readback
 s_selectmap_data_d <= x"FF";

 if (SM_RB_RQST_i = '1') then
 count_readback <= 0;
 SM_RB_STATUS_o <= '1';
 end if;

 end if;
 end if;
 end process;

end rtl;

92

G. X1 PC/104 INTERFACE VHDL PACKAGE
(from [17])

-- pc104Int.vhd --
-- Author: Mindy Surratt, 2005 --
-- Research Associate, Naval Postgraduate School, Monterey, CA --
-- --
-- PC/104 Interface code package --
-- constants: bus addresses for the PC/104 interface --
-- everything else unused --

library ieee;
use ieee.std_logic_1164.all;
use std.textio.all;

package pc104IntPack is

 -- PC104 Bus Address

CONSTANT C_IMULowAddress : std_logic_vector(9 downto 0) :=

"1101000000"; --x340
CONSTANT C_IMUHighAddress : std_logic_vector(9 downto 0) :=

"1101101000"; --x368
CONSTANT C_LowAddress : std_logic_vector(9 downto 0) :=

"1101000000"; --x340
CONSTANT C_HighAddress : std_logic_vector(9 downto 0) :=

"1101101000"; --x368
CONSTANT C_RESET : std_logic_vector(9 downto 0) :=

"1101000010"; --x342
CONSTANT C_TEST_ADDR : std_logic_vector(9 downto 0) :=

"1101000001"; --x341
CONSTANT C_pix_ADDR : std_logic_vector(9 downto 0) :=

"1101000000"; --x340
CONSTANT C_STATUS_ADDR : std_logic_vector(9 downto 0) :=

"1101000011"; --x343

function TMR(a:std_logic_vector;b:std_logic_vector;c:std_logic_vector)
return std_logic_vector;

function TMR(a:std_logic;b:std_logic;c:std_logic)
return std_logic;
end pc104IntPack;

package body pc104IntPack is

function TMR(a:std_logic_vector;b:std_logic_vector;c:std_logic_vector)
 return std_logic_vector is
 variable tmr_ret :std_logic_vector(a'range);
begin
 for i in a'range loop
 tmr_ret(i) := (a(i) and c(i)) or (a(i) and b(i)) or (b(i) and

c(i));
 end loop;
 return tmr_ret;

93

end TMR;

function TMR(a:std_logic;b:std_logic;c:std_logic)
 return std_logic is
 variable tmr_ret :std_logic;
begin
 tmr_ret:= (a and c) or (a and b) or (b and c);
 return tmr_ret;

94

H. X1 PC/104 INTERFACE CODE
(from [17])

-- pc104Int.vhd --
-- Author: Mindy Surratt, 2005 --
-- Research Associate, Naval Postgraduate School, Monterey, CA --
-- --
-- PC/104 Interface code --

library IEEE;
--library exemplar;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
--use exemplar.exemplar_1164.all;
use work.pc104intpack.all;

--
-- PC104 interface
--
entity pc104Int is
 port (
 --
 -- Inputs
 --
 Clk_i : in std_logic;
 reset : in std_logic;
 T_Address_i_ : in STD_LOGIC_VECTOR (9 downto 0);
 T_IORead_i : in STD_LOGIC; --active low, read data into

T_Data_io
 T_IOWrite_i : in STD_LOGIC; -- active high
 T_AEN_i : in STD_LOGIC; -- active low

 -- IO
 T_Data_io_ : inout STD_LOGIC_VECTOR (7 downto 0);

--
-- FPGA side interface
--
 pix_data_out : out std_logic_vector(7 downto 0);
 pix_data_rdy : out std_logic;
 pix_data_ack : in std_logic;

 pix_data_in : in std_logic_vector(7 downto 0);
 pix_data_wr : in std_logic --active high

);
end pc104Int;

architecture rtl of pc104Int is

component fifo_out
 port (
 din: IN std_logic_VECTOR(31 downto 0);
 wr_en: IN std_logic;

95

 wr_clk: IN std_logic;
 rd_en: IN std_logic;
 rd_clk: IN std_logic;
 ainit: IN std_logic;
 dout: OUT std_logic_VECTOR(31 downto 0);
 full: OUT std_logic;
 empty: OUT std_logic);
end component;
--
-- SIGNALS
--
SIGNAL S_IOTemp___: STD_LOGIC_VECTOR(7 downto 0);
SIGNAL TestData __: STD_LOGIC_VECTOR(7 downto 0);
SIGNAL TestData2__: STD_LOGIC_VECTOR(7 downto 0);
SIGNAL S_Decode___: STD_LOGIC;
SIGNAL S_RangeCheck _: STD_LOGIC;
signal iow___: std_logic;
signal iow_d___: std_logic;
signal data_in___: std_logic_vector(7 downto 0);
signal addr___: std_logic_vector(9 downto 0);
signal aen___: std_logic;
signal pix_data_in_reg__: std_logic_vector(7 downto 0);
signal status_reg__: std_logic_vector(7 downto 0);
signal status_reg_iord__: std_logic_vector(7 downto 0);
signal status_read__: std_logic;
signal status_read_d__: std_logic;
signal status_reg_d__: std_logic;
signal status_read_dd__: std_logic;
signal ioread_d___: std_logic;
signal ioread_dd___: std_logic;
signal fifo_read: std_logic;
signal fifo_read_d: std_logic;
signal fifo_read_dd: std_logic;
signal fifo_rd: std_logic;
signal full:std_logic;
signal empty:std_logic;
signal ainit:std_logic;
signal fifo_din: std_logic_vector(31 downto 0);
signal fifo_dout: std_logic_vector(31 downto 0);

begin
ainit <= '0';
--
-- sync
--
process(clk_i)
begin
if(clk_i'event and clk_i = '1') then
 data_in <= T_data_io;
 iow <= T_IOWrite_i;
 iow_d <= iow;
 aen<= t_aen_i;
 addr<= t_address_i;
end if;
end process;

96

 --
 -- Address Range Check lines
 --
 S_RangeCheck <= '1' when ((T_Address_i >= C_LowAddress)
 and (T_Address_i <= C_HighAddress))
 else '0';

 --
 -- Decode Line
 --
 S_Decode <= '1' when (T_AEN_i = '0' and S_RangeCheck = '1') else

'0';
 --
 -- Bidirctional Data IO
 --
 T_Data_io <= S_IOTemp when (S_Decode = '1' and T_IORead_i = '0')
 else "ZZZZZZZZ";

IOWrite: Process(clk_i)
begin
 if(clk_i'event and clk_i = '1') then

 if(pix_data_ack = '1') then
 pix_data_rdy <= '0';
 end if;

 if(iow = '1' and iow_d = '0') then

 if AEN = '0' then

 case Addr is

 when C_TEST_ADDR =>
 TestData(7 downto 0) <= data_in;

 when C_pix_ADDR =>
 pix_data_out(7 downto 0) <= data_in;
 pix_data_rdy <= '1';

 when others =>
 NULL;

 end case;

 end if;

 end if;

 end if;
end process;

IORead: Process(T_Address_i,TestData,pix_data_in_reg,status_reg_iord)
begin

 fifo_read <= '0';
 status_read <= '0';

97

 case T_Address_i is

 when C_pix_ADDR=>
 S_IOTemp <= pix_data_in_reg;
 fifo_read <= '1';

 when C_STATUS_ADDR =>
 S_IOTemp <= status_reg_iord;
 status_read <= '1';

 when others =>
 S_IOTemp <= (others => '0');

 end case;

end process;

process(clk_i,reset)
begin

 if (reset = '1') then

 status_reg_iord(0) <= '0';

 elsif(clk_i'event and clk_i = '1') then

 fifo_read_d <= fifo_read;
 fifo_read_dd <= fifo_read_d;
 status_reg_iord(7 downto 1) <= (others => '0');

 if (fifo_rd = '1') then
 status_reg_iord(0) <= '1';
 end if;

 if (ioread_d = '1' and ioread_dd = '0' and fifo_read_dd = '1')

then
 status_reg_iord(0) <= '0';
 end if;

 end if;

end process;

fifo_rd <= '1' when empty = '0' and status_reg_iord(0) = '0' else '0';

process(clk_i)
begin

 if(clk_i'event and clk_i = '1') then

 status_reg(7 downto 1) <= (others => '0');
 ioread_d <= T_IORead_i;
 ioread_dd <= ioread_d;
 status_read_d <= status_read;
 status_read_dd <= status_read_d;

98

 if(pix_data_wr = '1') then
 status_reg(0)<= '1';
 end if;

 if (ioread_d = '1' and ioread_dd = '0' and status_reg_iord(0) =

'1'
 and status_read = '1') then
 status_reg(0) <= '0';
 end if;

 end if;

end process;

fifo_din(31 downto 8) <= (others => '0');
fifo_din(7 downto 0) <= pix_data_in;
pix_data_in_reg <= fifo_dout(7 downto 0);

fifo_out_1 : fifo_out
port map (
 din => fifo_din,
 wr_en => pix_data_wr,
 wr_clk => clk_i,
 rd_en => fifo_rd,
 rd_clk => clk_i,
 ainit => ainit,
 dout => fifo_dout,
 full => full,
 empty => empty);

end rtl;

99

I. X2 INTERFACE CODE FOR X1
(after [17])

-- filename: x2Int.vhd
-- author: Mindy Surratt (2005)
-- modified: James Coudeyras (2005)
--
-- This file is the X1 control interface to X2.
-- Any additional programs necessary to run the X2 experiment
-- are incorporated into this module.
-- This module also contains the reporting and readback
-- requirements as well as the reconfiguration threshold
--

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use IEEE.std_logic_unsigned.all;
use IEEE.std_logic_arith.all;

entity x2Int is

-- FOR SR IMPLEMENTATION {START}
 generic (NUM_OF_TAPS : integer := 2; -- Number of taps LFSR
 WIDTH : integer := 15; -- Width of m-length LFSR
 NUM_SRS : integer := 16); -- # of shift registers

in X2
-- FOR SR IMPLEMENTATION {END}

 port (
 CLOCK_i : in std_logic; -- 25 MHz system clock
 CLOCK_X2_i : in std_logic; -- 12.5 MHz system clock w/

reset
 -- add appropriate clock to

clockGen
 RESET_i : in std_logic; -- Reset signal

-- FOR SR IMPLEMENTATION {START}, signals coming directly to/from X2
-- JCC 20051031 SR copy removed from X1 on this and future versions,

fcn implemented on X2
 T_BITOUT_TO_X2_o : out std_logic;
 T_RESET_TO_X2_o : out std_logic;
 T_CE_TO_X2_o : out std_logic; -- clock enable to X2
 T_DOUT_FROM_X2_i : in std_logic; -- verify LFSR

operation
 T_XOR_DOUT_FROM_X2_i : in std_logic; -- function moved to X2
 T_SUMDIFF_FROM_X2_i : in std_logic_vector (15 downto 0);
-- FOR SR IMPLEMENTATION {END}

 DATA_o : out std_logic_vector(7 downto 0);
 --Data bus out of X2 interface, in this case used to write to

PC104
 DATA_i : in std_logic_vector(7 downto 0);
 --Data bus into X2 interface, in this case used to read from

PC104

100

 PC104_WR_EN_o : out std_logic;
 -- Active high, if WR_RDY = '1', then set WR_EN = '1' for one

clock
 -- and whatever is on DATA_o when WR_EN is high will get

written to PC104

 PC104_WR_RDY_i : in std_logic; --Active High, ok to write

to PC104
 -- if WR_RDY is high, whatever you write to PC104
 -- will definitely get printed (your component has priority)

 PC104_RD_RDY_i : in std_logic; --Active high, if RD_RDY =

'1', then there is
 -- data on the PC104 bus ready to be read. Once you read the

data (from DATA_i),
 -- set RD_ACK high for one clock to release the PC104

 PC104_RD_ACK_o : out std_logic; --Active high

 SM_CONFIG_RQST_o : out std_logic; --Active high, set

config_rqst high
 -- for one clock if you want to start a selectmap

config/reconfig

 SM_CONFIG_STATUS_i : in std_logic; --Active high, stays '1' as

long as
 -- a selectmap config is going on (don't request a readback

or reconfig while
 -- either is still active, it won't hurt anything, but it

won't go through)

 SM_RB_RQST_o : out std_logic;--Active high, set rb_rqst

high
 -- for one clock if you want to start a selectmap readback

 SM_RB_STATUS_i : in std_logic --Active high, stays '1' as

long as
 -- a selectmap rb is going on (don't request a readback or

reconfig while
 -- either is still active, it won't hurt anything, but it

won't go through)
);
end x2Int;

architecture rtl of x2Int is

-- DLY_TIME counter and reset signals

 CONSTANT DLY_TIME : integer := 750000000; --SIMULATION

5000;
 -- ~30 seconds
 signal s_reset_sr : std_logic;
 signal first_reset : std_logic;
 signal sm_rb_status_d : std_logic;
 signal dly_cnt : integer range 0 to 1000000000;
 signal dly_start_rb : std_logic;

101

 signal sm_config_status_d : std_logic;

-- Error report timer signals
 CONSTANT ERR_RPT_TIME : integer := 75000000; --heartbeat

reports every 3 sec
 -- time between automatic error reports, adjust as needed (use 50

for simulations)
 CONSTANT REPORT_OUT_LENGTH : integer := 23; -- set to the number

of bytes
 -- included in your output vector that needs to be printed to

PC104
 signal sr_timer : integer range 0 to ERR_RPT_TIME; -- for

heartbeat reports
 signal count_out_vect : integer range 0 to REPORT_OUT_LENGTH;
 signal report_out_vect : std_logic;
-- ensure these split lines don't cause a problem
 type output_vector is array (REPORT_OUT_LENGTH-1 downto 0)
 of std_logic_vector(7 downto 0);
 signal out_vect : output_vector;

-- readback/reconfig process, CLOCK_X2_i signals
 signal reconfig_from_error : std_logic;
 signal sr_start_rb : std_logic;

--readback/reconfig process, T_CLOCK_i signals
 signal reconfig_from_error_t_clock : std_logic;
 signal reconfig_from_error_save : std_logic;
 signal rb_started : std_logic;
 signal reconfig_timer : integer range 0 to

ERR_RPT_TIME;

-- X1 SR signals (LFSR) {START}
 signal bit_out : std_logic;
 signal lfsr : std_logic_vector(WIDTH-1 downto 0) :=

"111111111111111";
 signal par_fdbk : std_logic_vector(NUM_OF_TAPS downto

0); --parity fdbk
 signal lfsr_in : std_logic; --mux

 type column is array ((NUM_SRS-1) downto 0) of std_logic_vector(7

downto 0);

 type tap_point_array is array (NUM_OF_TAPS-1 downto 0) of integer;
 -- Parameterize LFSR taps. (e.g. g(D) = D^15 + D + 1)
 -- Tap points, including output tap 0.
 constant TAP : tap_point_array := (1, 0);

-- X1 SR signals (SR)
 signal ce : std_logic := '1';
-- JCC 20051031 split ce into 30 sec smrb and reconfig from error
 signal ce_30 : std_logic := '1';
 signal ce_recon : std_logic := '1';
 signal s_dout_from_X2_i : std_logic_vector(7 downto 0);

-- X1 SR signals (Counter)
 signal cnt_dout_err : std_logic_vector (7 downto 0) :=x"00";
 signal cnt_col_V0 : std_logic_vector (7 downto 0) :=x"00";

102

 signal cnt_col_V1 : std_logic_vector (7 downto 0) :=x"00";
 signal cnt_col_V2 : std_logic_vector (7 downto 0) :=x"00";
 signal cnt_col_V3 : std_logic_vector (7 downto 0) :=x"00";
 signal cnt_col_V4 : std_logic_vector (7 downto 0) :=x"00";
 signal cnt_col_V5 : std_logic_vector (7 downto 0) :=x"00";
 signal cnt_col_V6 : std_logic_vector (7 downto 0) :=x"00";
 signal cnt_col_V7 : std_logic_vector (7 downto 0) :=x"00";
 signal cnt_col_V8 : std_logic_vector (7 downto 0) :=x"00";
 signal cnt_col_V9 : std_logic_vector (7 downto 0) :=x"00";
 signal cnt_col_V10 : std_logic_vector (7 downto 0) :=x"00";
 signal cnt_col_V11 : std_logic_vector (7 downto 0) :=x"00";
 signal cnt_col_V12 : std_logic_vector (7 downto 0) :=x"00";
 signal cnt_col_V13 : std_logic_vector (7 downto 0) :=x"00";
 signal cnt_col_V14 : std_logic_vector (7 downto 0) :=x"00";
 signal cnt_col_V15 : std_logic_vector (7 downto 0) :=x"00";
-- X1 SR signals {END}

begin

-- Asynchronous assignments of top level signals
 T_RESET_TO_X2_o <= s_reset_sr;
--MLS might help if we actually use sr_start_rb...
--MLS 20051018 get rid of reconfig from error for now
 SM_RB_RQST_o <= sr_start_rb or dly_start_rb;
-- SM_RB_RQST_o <= dly_start_rb;
 SM_CONFIG_RQST_o <= reconfig_from_error_t_clock;
-- SM_CONFIG_RQST_o <= '0';

-- Processes for SR implementation (LFSR portion) {START}
 T_BITOUT_TO_X2_o <= bit_out;

--MLS SR stop SR during readback
 T_CE_TO_X2_o <= ce; -- clock enable

-- JCC 20051031 make ce function of 30 second rb ce and reconfig from

error ce
 ce <= (ce_30 and ce_recon);
 ce_30 <= (not SM_RB_STATUS_i); -- clock disable for 30 sec readback

 lfsr0 : process(CLOCK_X2_i) begin
 if (s_reset_sr = '1') then
 lfsr <= (others=>'1');
 elsif (CLOCK_X2_i'event and CLOCK_X2_i='1') then
 if (ce = '1') then
 lfsr <= lfsr_in & lfsr(lfsr'high downto 1);
 end if;
 end if;
 end process;

 par_fdbk(0) <= '0';

 fdbk : for X in 0 to TAP'high generate -- parity generator
 par_fdbk(X+1) <= par_fdbk(X) xor lfsr(TAP(X));
 end generate fdbk;

 lfsr_in <= par_fdbk(par_fdbk'high);

103

 bit_out <= lfsr(lfsr'low); -- LFSR output

-- Processes for SR implementation (LFSR portion) {END}

-- Processes for SR implementation (Counter portion) {START}

-- This process counts errors from X2, compares the output from the a-

side of X2 SRs
-- with the a-side of X1 (counts errors), and resets error counters
 counter : process (CLOCK_X2_i, s_reset_sr)
 variable cnt_dout_var : integer range 0 to 255 := 0;

 begin

 if (s_reset_sr = '1') then
 cnt_dout_var := 0;
 cnt_dout_err <= X"00";
 cnt_col_V0 <= x"00";
 cnt_col_V1 <= x"00";
 cnt_col_V2 <= x"00";
 cnt_col_V3 <= x"00";
 cnt_col_V4 <= x"00";
 cnt_col_V5 <= x"00";
 cnt_col_V6 <= x"00";
 cnt_col_V7 <= x"00";
 cnt_col_V8 <= x"00";
 cnt_col_V9 <= x"00";
 cnt_col_V10 <= x"00";
 cnt_col_V11 <= x"00";
 cnt_col_V12 <= x"00";
 cnt_col_V13 <= x"00";
 cnt_col_V14 <= x"00";
 cnt_col_V15 <= x"00";

 elsif (CLOCK_X2_i'event and CLOCK_X2_i='1') then

--MLS SR don't do this if we're reading back, will get nonsense
 if (ce = '1') then

 s_dout_from_X2_i <= "0000000" & T_DOUT_FROM_X2_i;

 if (T_XOR_DOUT_FROM_X2_i = '1') then
 cnt_dout_var := cnt_dout_var + 1;
 end if;
 cnt_dout_err <=

std_logic_vector(to_unsigned(cnt_dout_var,8));

 if T_SUMDIFF_FROM_X2_i(0)='1' then
 cnt_col_V0 <= cnt_col_V0 + 1;
 end if;
 if T_SUMDIFF_FROM_X2_i(1)='1' then
 cnt_col_V1 <= cnt_col_V1 + 1;
 end if;
 if T_SUMDIFF_FROM_X2_i(2)='1' then
 cnt_col_V2 <= cnt_col_V2 + 1;
 end if;
 if T_SUMDIFF_FROM_X2_i(3)='1' then

104

 cnt_col_V3 <= cnt_col_V3 + 1;
 end if;
 if T_SUMDIFF_FROM_X2_i(4)='1' then
 cnt_col_V4 <= cnt_col_V4 + 1;
 end if;
 if T_SUMDIFF_FROM_X2_i(5)='1' then
 cnt_col_V5 <= cnt_col_V5 + 1;
 end if;
 if T_SUMDIFF_FROM_X2_i(6)='1' then
 cnt_col_V6 <= cnt_col_V6 + 1;
 end if;
 if T_SUMDIFF_FROM_X2_i(7)='1' then
 cnt_col_V7 <= cnt_col_V7 + 1;
 end if;
 if T_SUMDIFF_FROM_X2_i(8)='1' then
 cnt_col_V8 <= cnt_col_V8 + 1;
 end if;
 if T_SUMDIFF_FROM_X2_i(9)='1' then
 cnt_col_V9 <= cnt_col_V9 + 1;
 end if;
 if T_SUMDIFF_FROM_X2_i(10)='1' then
 cnt_col_V10 <= cnt_col_V10 + 1;
 end if;
 if T_SUMDIFF_FROM_X2_i(11)='1' then
 cnt_col_V11 <= cnt_col_V11 + 1;
 end if;
 if T_SUMDIFF_FROM_X2_i(12)='1' then
 cnt_col_V12 <= cnt_col_V12 + 1;
 end if;
 if T_SUMDIFF_FROM_X2_i(13)='1' then
 cnt_col_V13 <= cnt_col_V13 + 1;
 end if;
 if T_SUMDIFF_FROM_X2_i(14)='1' then
 cnt_col_V14 <= cnt_col_V14 + 1;
 end if;
 if T_SUMDIFF_FROM_X2_i(15)='1' then
 cnt_col_V15 <= cnt_col_V15 + 1;
 end if;
 end if;
 end if;
 end process;
-- Processes for SR implementation (Counter portion) {END}

-- Timer to determine how frequently to print out heart beat error

reports (every 3 sec)
 process(CLOCK_i, s_reset_sr) begin
 if (s_reset_sr = '1') then
 sr_timer <= 0;
 elsif(CLOCK_i'event and CLOCK_i = '1') then
 if (sr_timer = ERR_RPT_TIME) then
 sr_timer <= 0;
 else
 sr_timer <= sr_timer + 1;
 end if;
 end if;
 end process;

105

-- Do reset for sr
 process (CLOCK_i,RESET_i) begin
 if (RESET_i = '1') then
 s_reset_sr <= '1';
 elsif (CLOCK_i'event and CLOCK_i = '1') then
 sm_config_status_d <= SM_CONFIG_STATUS_i;

--MLS hold reset high for 30 seconds, do reset after config
--MLS 2005.09.15 only hold reset high until version is done and x2 is

done configuring, no need
-- to hold everything off for 30s
 s_reset_sr <= '0';
--MLS 2005.10.18 reset counters and sr as soon as a reconfig happens
 if (first_reset='0' or (SM_CONFIG_STATUS_i = '0' and

sm_config_status_d = '1')) then
 s_reset_sr <= '1';
 end if;
 end if;
 end process;

--MLS 2005.09.15 wait until after X2 is done configuring to do first

reset (instead of 30s)
 process(CLOCK_i,RESET_i) begin
 if (RESET_i = '1') then
 first_reset <= '0';
 elsif (CLOCK_i'event and CLOCK_i = '1') then
 if (first_reset = '0' and SM_CONFIG_STATUS_i = '0' and

sm_config_status_d = '1') then
 first_reset <= '1';
 end if;
 end if;
 end process;

-- Every DLY_TIME clocks after that, do a selectmap readback
-- don't start dly_cnt until s_reset_sr goes low
-- (after version is done and x2 config is done)
 process(CLOCK_i, s_reset_sr)
 begin
 if (s_reset_sr = '1') then
 sm_rb_status_d <= '0';
 dly_cnt <= 0;
 dly_start_rb <= '0'; -- Signal to notify that the delay

counter wants
 -- to perform a SMRB

 elsif(CLOCK_i'event and CLOCK_i = '1') then

 dly_start_rb <= '0';
 sm_rb_status_d <= SM_RB_STATUS_i;

-- If we just finished a SMRB, start the counter over
 if (SM_RB_STATUS_i = '0' and sm_rb_status_d = '1') then
 dly_cnt <= 0;
 elsif (dly_cnt < DLY_TIME) then
 dly_cnt <= dly_cnt + 1;
 elsif (dly_cnt = DLY_TIME) then
 dly_cnt <= 0;

106

 dly_start_rb <= '1'; -- After DLY_TIME clocks, start a
readback

 end if;
 end if;
 end process;
-- SMRB strictly based on time (not certain number of errors

--Process to write error reports out to the PC104
 process (CLOCK_i, s_reset_sr) begin
 if (s_reset_sr = '1') then --hold off printing error reports

until SR is reset
 count_out_vect <= 0;
 report_out_vect <= '0';
 PC104_WR_EN_o <= '0';
 DATA_o <= x"31";
 elsif (CLOCK_i'event and CLOCK_i = '1') then

 PC104_WR_EN_o <= '0'; --default assignment for WR_EN

-- Whenever we've gone through ERR_RPT_TIME clocks or we get an error

from X2 (a signal
-- coming directly from X2), and we've already finished printing out

the last error report
-- (report_out_vect = '0'), set the output error report vector to the

correct values
 if ((reconfig_from_error = '1' and report_out_vect = '0')

or (sr_timer = ERR_RPT_TIME and report_out_vect = '0'
and

 reconfig_from_error_save = '0' and
SM_CONFIG_STATUS_i = '0')) then

 -- send out_vect to PC104
 out_vect(0) <= x"45"; --E
 out_vect(1) <= x"52"; --R, easier to spot error reports

in output
 out_vect(2) <= s_dout_from_X2_i(7 downto 0);
 out_vect(3) <= s_dout_from_X2_i(7 downto 0); -- extra

output vector
 out_vect(4) <= T_SUMDIFF_FROM_X2_i(15 downto 8);
 out_vect(5) <= T_SUMDIFF_FROM_X2_i(7 downto 0);
 out_vect(6) <= cnt_dout_err;
 out_vect(7) <= cnt_col_V15;
 out_vect(8) <= cnt_col_V14;
 out_vect(9) <= cnt_col_V13;
 out_vect(10) <= cnt_col_V12;
 out_vect(11) <= cnt_col_V11;
 out_vect(12) <= cnt_col_V10;
 out_vect(13) <= cnt_col_V9;
 out_vect(14) <= cnt_col_V8;
 out_vect(15) <= cnt_col_V7;
 out_vect(16) <= cnt_col_V6;
 out_vect(17) <= cnt_col_V5;
 out_vect(18) <= cnt_col_V4;
 out_vect(19) <= cnt_col_V3;
 out_vect(20) <= cnt_col_V2;
 out_vect(21) <= cnt_col_V1;
 out_vect(22) <= cnt_col_V0;
 report_out_vect <= '1';

107

 end if;

-- If we've set the output vector (report_out_vect = '1'), then print

the output vector
-- to the PC104 one byte at a time (REPORT_OUT_LENGTH bytes will be

printed)
-- Be sure to set REPORT_OUT_LENGTH to proper value in signal

definitions above
 if (report_out_vect='1') then
 if (count_out_vect < REPORT_OUT_LENGTH and

PC104_WR_RDY_i = '1') then
--MLS
-- ce <= '0'; -- disables shift registers while

reading errors
 DATA_o <= out_vect(count_out_vect);
 PC104_WR_EN_o <= '1';
 count_out_vect <= count_out_vect + 1;
 elsif (count_out_vect = REPORT_OUT_LENGTH) then
--MLS
-- ce <= '1'; -- enables shift registers after

report finished
 count_out_vect <= 0;
 report_out_vect <= '0';
 end if;
 end if;
 end if;
 end process;

 process(CLOCK_X2_i,s_reset_sr) begin

 if (s_reset_sr = '1') then

 reconfig_from_error <= '0';

 elsif (CLOCK_X2_i'event and CLOCK_X2_i = '1') then

 reconfig_from_error <= '0';

 if ((cnt_col_V0 = x"80" or cnt_col_V1 = x"80" or

cnt_col_V2 = x"80" or
 cnt_col_V3 = x"80" or cnt_col_V4 = x"80" or

cnt_col_V5 = x"80" or
 cnt_col_V6 = x"80" or cnt_col_V7 = x"80" or

cnt_col_V8 = x"80" or
 cnt_col_V9 = x"80" or cnt_col_V10 = x"80" or

cnt_col_V11 = x"80" or
 cnt_col_V12 = x"80" or cnt_col_V13 = x"80" or

cnt_col_V14 = x"80" or
 cnt_col_V15 = x"80" or cnt_dout_err = x"80") and

reconfig_from_error = '0' and reconfig_from_error_save =
'0') then

 reconfig_from_error <= '1';
 end if;

 end if;

 end process;

108

--process to trigger SMRB/RC on errors
 process(CLOCK_i, s_reset_sr) begin
 if (s_reset_sr = '1') then

 reconfig_timer <= 0;
 reconfig_from_error_save <= '0';
 reconfig_from_error_t_clock <= '0';
 sr_start_rb <= '0'; --signal to notify the sr counter has

reported
 -- enough errors to warrant a readback
 rb_started <= '0'; --make sure sr_start_rb only 1 clock
 ce_recon <= '1';

 elsif (CLOCK_i'event and CLOCK_i = '1') then

 sr_start_rb <= '0';
 reconfig_timer <= reconfig_timer + 1;
 reconfig_from_error_t_clock <= '0';

-- If we got a reconfig request from the sr, hold that thought
 if (reconfig_from_error = '1') then
 reconfig_timer <= 0;
 reconfig_from_error_save <= '1';
 ce_recon <= '0';

-- Wait until SMRB is done, and then request a reconfig from the top

level
 elsif (reconfig_from_error_save = '1' and SM_RB_STATUS_i =

'0' and
 sm_rb_status_d = '1') then
 reconfig_from_error_t_clock <= '1';
 reconfig_from_error_save <= '0';
 rb_started <= '0';

-- Wait until last error report is printed out before starting readback
-- Once readback has started, don't start another one!
-- Wait to start readback for ~3s (50000000) after reaching critical
-- number of errors, this is for JTAG external error injection, errors
-- begin accumulating before it is done programming, so 128 errors
-- could be reached before partial reconfig complete, so tries to
-- readback while JTAG still going on.
 elsif (reconfig_from_error_save = '1' and reconfig_timer =

ERR_RPT_TIME and
 report_out_vect = '0' and SM_RB_STATUS_i = '0' and

rb_started = '0') then
 sr_start_rb <= '1';
 rb_started <= '1';

 end if;

 end if;
 end process;

end rtl;

109

J. CLOCK CODE
(after [17])

-- filename: clockGen.vhd
-- author: Mindy Surratt (2005)
-- modified: James Coudeyras (2005)
--
-- This file divides the 25 MHz clock down to 12.5 MHz
--

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use IEEE.std_logic_unsigned.all;
use IEEE.std_logic_arith.all;

entity clockGen is

 port (

 T_CLOCK_i : in std_logic;

 CLOCK_o : out std_logic;
 CLOCK_X2_o : out std_logic;
 RESET_FROM_X2INT_i : in std_logic;

 CLOCK_NOBUFG_o : out std_logic
);

end clockGen;

architecture rtl of clockGen is

--REMOVE FOR SIMULATION
 component BUFG port (
 I : in std_logic;
 O : out std_logic);
 end component;

 signal s_clock : std_logic;
 signal s_clock_i : std_logic := '0';
 signal s_clock_X2 : std_logic;
 signal s_clock_X2_i : std_logic := '0';
 signal s_clock_X2_cnt : integer range 0 to 16;

begin

 CLOCK_NOBUFG_o <= s_clock_i;

 process(t_clock_i)
 begin
 if(T_CLOCK_i'event and T_CLOCK_i = '1') then
 s_clock_i <= not s_clock_i;
 end if;

110

 end process;

-- FOR SR IMPLEMENTATION {START}
-- (used because this clock has a reset)
 process (T_CLOCK_i,RESET_FROM_X2INT_i) begin
 if (RESET_FROM_X2INT_i = '1') then
 s_clock_x2_i <= '0'; -- changed _cnt to _i
 elsif (T_CLOCK_i'event and T_CLOCK_i = '1') then
 if (s_clock_X2_cnt >= 1) then -- this achieves a divide by

2 clock period!!!
 s_clock_X2_i <= not s_clock_X2_i;
 s_clock_X2_cnt <= 0;
 else
 s_clock_X2_cnt <= s_clock_X2_cnt + 1;
 end if;
 end if;
 end process;
-- FOR SR implementation {END}

--MLS REMOVE FOR SIMULATION
--s_clock_X2 <= s_clock_X2_i;
--s_clock <= s_clock_i;
--Clock distribution network for X2 clock
 s_clock_X2_bufg : BUFG port map (-- comment out this code only for

simulations!!!
 I => s_clock_X2_i,
 O => CLOCK_X2_o
);
--Clock distribution network for 25MHz system clock
 s_clock_bufg : BUFG port map (-- comment out this code only for

simulations!!!
 I => s_clock_i,
 O => CLOCK_o
);

end rtl;

111

K. X1 TOP-LEVEL CODE
(after [17])

-- filename: cftp_x1.vhd
-- author: Mindy Surratt (2005)
-- modified: James Coudeyras (2005)
--
-- This is the top level code for X1
--

-- Modifications for different X2 implementations:
-- only have to change signal names/sizes coming from X2
-- must be changed in top level entity, x2Int component
-- declaration, and x2Int port map. search for "implementation"
-- each instance that needs to be changed is surrounded
-- by comments:
-- for XXXXX implementation
-- Also change signal names in ucf file

--Naming conventions:
-- Top level signals that go directly to pins, or pass directly through
-- the top level to/from a component to pins
-- T_XXXXXX_io T_XXXXXX_i T_XXXXX_o
-- Top level signals that do not pass directly to pins (ie, internal
-- signals between components/top level
-- XXXXXXX_io XXXXX_i XXXXXX_o
-- Constants
-- XXXXXXXX
-- Internal signals
-- xxxxxxxx
-- internal signal that is just a copy or slight modification
-- of top level signal
-- s_xxxxx_io s_xxxxx_i s_xxxxx_o
-- delayed copy of signal (ie signal_d <= signal)
-- xxxxx_d
-- state machine signal
-- xxxxx_state
-- state machine state
-- xxxxx_st
-- counter
-- cnt_xxxxx
-- start signal
-- start_xxxxx
-- done signal
-- done_xxxxx

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use IEEE.std_logic_unsigned.all;
use IEEE.std_logic_arith.all;

112

entity cftp_x1 is
 port (

-- To/From X2 for SR implementation {START}
-- signals going to pins on X2
-- change/add/remove as needed
-- also change cftp_x1.ucf file to match
 T_BITOUT_TO_X2_o : out std_logic;
 T_RESET_TO_X2_o : out std_logic;
 T_CE_TO_X2_o : out std_logic; -- clock enable to X2
 T_DOUT_FROM_X2_i : in std_logic; --_vector (15 downto

0);
 T_XOR_DOUT_FROM_X2_i : in std_logic; -- comparing douts on

X2
 T_SUMDIFF_FROM_X2_i : in std_logic_vector (15 downto 0);
-- To/From X2 for SR implementation {END}

--PC/104 Signals
 T_clock_i : in STD_LOGIC;
 T_Address_i : in STD_LOGIC_VECTOR (9 downto 0);
 T_IORead_i : in STD_LOGIC;
 T_IOWRITE_i : in STD_LOGIC;
 T_AEN_i : in STD_LOGIC;
 T_Data_io : inout STD_LOGIC_VECTOR (7 downto 0);

 T_X2_MODE : out STD_LOGIC_VECTOR(2 downto 0);

--Selectmap Signals
 T_CCLK_o : out STD_LOGIC;
 T_SELECTMAP_INIT_o : out STD_LOGIC;
 T_SELECTMAP_WRITE_o : out STD_LOGIC;
 T_SELECTMAP_CS_o : out STD_LOGIC;
 T_SELECTMAP_DATA_io : inout STD_LOGIC_VECTOR(7 downto 0);
 T_SELECTMAP_BUSY_i : in STD_LOGIC;

--Flash Interface Signals
 T_FLASH_DATA_i : in STD_LOGIC_VECTOR (15 downto 0);
 T_FLASH_ADDRESS_o : out STD_LOGIC_VECTOR (20 downto 0);
 T_FLASH_WE_o : out STD_LOGIC;
 T_FLASH_RP_o : out STD_LOGIC;
 T_FLASH_WP_o : out STD_LOGIC;
-- JCC implemented change from Mindy that allows for second flash on

CFTP-2
-- T_FLASH_CE_o : out STD_LOGIC;
 T_FLASH_CE_A_o : out STD_LOGIC;
 -- NO FLASH B on CFTP1 !!!!
 T_FLASH_CE_B_o : out STD_LOGIC;
 T_FLASH_OE_o : out STD_LOGIC
);
end cftp_x1;

architecture rtl of cftp_x1 is

 component clockGen port (

 T_CLOCK_i : in std_logic;

113

 CLOCK_o : out std_logic;
 CLOCK_X2_o : out std_logic;
 RESET_FROM_X2INT_i : in std_logic;

 CLOCK_NOBUFG_o : out std_logic);

 end component;

 component x2Int port (

 CLOCK_i : in std_logic; --25 MHz system clock
 CLOCK_X2_i : in std_logic;
 RESET_i : in std_logic;

-- for SR implementation {START}
-- signals going to pins on X2
-- change/add/remove as needed
-- also change cftp_x1.ucf file to match
 T_BITOUT_TO_X2_o : out std_logic;
 T_RESET_TO_X2_o : out std_logic;
 T_CE_TO_X2_o : out std_logic; -- clock enable to X2
 T_DOUT_FROM_X2_i : in std_logic; --_vector (15 downto

0);
 T_XOR_DOUT_FROM_X2_i : in std_logic; -- comparing douts on

X2
 T_SUMDIFF_FROM_X2_i : in std_logic_vector (15 downto 0);
-- for SR implementation {END}

--MLS 20051109
 STALL : in std_logic;
--MLS END 20051109

 DATA_o : out std_logic_vector(7 downto 0);
 DATA_i : in std_logic_vector(7 downto 0);
 PC104_WR_EN_o : out std_logic;
 PC104_WR_RDY_i : in std_logic;
 PC104_RD_RDY_i : in std_logic;
 PC104_RD_ACK_o : out std_logic;

 SM_CONFIG_RQST_o : out std_logic;
 SM_CONFIG_STATUS_i : in std_logic;
 SM_RB_RQST_o : out std_logic;
 SM_RB_STATUS_i : in std_logic);

 end component;

 component SELECTMAP_readback port (

 T_CLOCK_i : in std_logic;
 CLOCK_i : in std_logic;
 CLOCK_NOBUFG_i : in std_logic;
 RESET_i : in std_logic;

 T_CCLK_o : out std_logic;
 T_SELECTMAP_INIT_o : out std_logic;
 T_SELECTMAP_WRITE_o : out std_logic;
 T_SELECTMAP_CS_o : out std_logic;

114

 T_SELECTMAP_DATA_o : out std_logic_vector(7 downto 0);
 T_SELECTMAP_DATA_i : in std_logic_vector(7 downto 0);

 SM_RB_RQST_i : in std_logic;
 SM_RB_STATUS_o : out std_logic;

 T_FLASH_DATA_i : in std_logic_vector(15 downto 0);
 T_FLASH_ADDRESS_o : out std_logic_vector(21 downto 0);

 PC104_WR_RDY_i : in std_logic;
 PC104_WR_EN_o : out std_logic;
 DATA_o : out std_logic_vector(7 downto 0));

 end component;

 component SELECTMAP_config port (

 T_CLOCK_i : in std_logic;
 RESET_i : in std_logic;

 T_SELECTMAP_INIT_o : out std_logic;
 T_SELECTMAP_WRITE_o : out std_logic;
 T_SELECTMAP_CS_o : out std_logic;
 T_SELECTMAP_DATA_o : out std_logic_vector(7 downto 0);

 SM_CONFIG_RQST_i : in std_logic;
 SM_CONFIG_STATUS_o : out std_logic;

 T_FLASH_DATA_i : in std_logic_vector(15 downto 0);
 T_FLASH_ADDRESS_o : out std_logic_vector(21 downto 0));

--MLS 20051109
 PC104_WR_RDY_i : in std_logic;
 PC104_WR_EN_o : out std_logic;
 DATA_o : out std_logic_vector(7 downto 0));
--MLS END 20051109

 end component;

 component pc104Int port (

 T_CLOCK_i : in std_logic;
 RESET_i : in std_logic;
 T_Address_i : in STD_LOGIC_VECTOR (9 downto 0);
 T_IORead_i : in STD_LOGIC;
 T_IOWRITE_i : in STD_LOGIC;
 T_AEN_i : in STD_LOGIC;
 T_Data_io : inout STD_LOGIC_VECTOR (7 downto 0);

 DATA_o : out std_logic_vector(7 downto 0);
 DATA_RDY_o : out std_logic;
 DATA_ACK_i : in std_logic;

 DATA_i : in std_logic_vector(7 downto 0);
 DATA_WREN_i : in std_logic;
 FIFO_FULL_o : out std_logic);

115

 end component;

 component version port (
 Clk : in std_logic;
 rstn : in std_logic;
 start : in std_logic;
 Rdy : out std_logic;
 pc104_wr_rdy : in std_logic;
 DOut : out std_logic_vector(7 downto 0);
 Done : out std_logic);
 end component;

-- clock/reset signals

 signal s_clock : std_logic;
 signal s_clock_nobufg : std_logic := '0';

 signal s_clock_X2 : std_logic;

 signal s_reset : std_logic := '1';
 signal s_reset_x2 : std_logic := '1';
 signal s_reset_d : std_logic := '1';
-- MLS 20051109
 signal stall : std_logic;
 signal stall_d : std_logic;
-- MLS 20051109

--Signals for X2 Interface

 signal ver_done_reset : std_logic;
-- signal x2_reset : std_logic;
 signal X2_wr_rdy : std_logic;
 signal X2_data_to_pc104 : std_logic_vector(7 downto 0);
 signal X2_data_to_pc104_wren : std_logic;
 signal X2_data_from_pc104_ack : std_logic;
 signal X2_sm_config_rqst : std_logic;
 signal X2_sm_rb_rqst : std_logic;

--Required signals for component version_0

 signal version_reset : std_logic;
 signal version_start : std_logic;
 signal version_rdy : std_logic;
 signal version_wr_rdy : std_logic;
 signal version_out : std_logic_vector (7 downto 0);
 signal version_done : std_logic;
 signal version_done_d : std_logic;

-- Signals for PC/104 Interface

 signal data_from_pc104_rdy : std_logic;
-- signal data_from_pc104_rdy_d : std_logic; -- NOT USED
 signal data_from_pc104_ack : std_logic;
 signal data_from_pc104 : std_logic_vector(7 downto 0);
 signal data_to_pc104 : std_logic_vector(7 downto 0);

116

 signal data_to_pc104_wren : std_logic;
 signal pc104_fifo_full : std_logic;

-- Signals for Config module

 signal selectmap_config_rqst : STD_LOGIC;
 signal config_active : std_logic;
-- signal config_active_d : std_logic; -- NOT USED

 signal flash_address_config : std_logic_vector (21 downto

0);

 signal INIT_config : STD_LOGIC;
 signal CS_config : STD_LOGIC;
 signal WRITE_config : std_logic;
 signal selectmap_write_data_config : std_logic_vector(7 downto 0);

-- MLS 20051109
 signal SC_data_to_pc104 : std_logic_vector(7 downto

0);
 signal SC_data_to_pc104_wren : std_logic;
 signal SC_wr_rdy : std_logic;
-- MLS END 20051109

-- Signals for Readback module

 signal RB_data_to_pc104 : std_logic_vector(7 downto

0);
 signal RB_data_to_pc104_wren : std_logic;
 signal RB_wr_rdy : std_logic;

 signal flash_address_rb : std_logic_vector (21

downto 0);

 signal selectmap_readback_rqst : STD_LOGIC;
 signal readback_active : std_logic;

 signal CCLK_readback : std_logic;
 signal INIT_readback : STD_LOGIC;
 signal CS_readback : STD_LOGIC;
 signal WRITE_readback : std_logic;
 signal selectmap_write_data_readback : std_logic_vector(7 downto

0);

-- Selectmap signals

 signal selectmap_write_data : std_logic_vector(7 downto 0) :=

x"00"; --SIMULATION
 signal s_selectmap_data_i : std_logic_vector(7 downto 0);
 signal s_selectmap_WRITE_o : std_logic := '1'; --SIMULATION

begin

117

 process(s_clock)
 begin
 if(s_clock'event and s_clock = '1') then
 s_reset <= '0';
 s_reset_d <= s_reset;
 end if;
 end process;

 ver_done_reset <= not version_done;

--set mode pins on X2 to activate SelectMap mode
T_x2_mode(0) <= '0';
T_x2_mode(1) <= '1';
T_x2_mode(2) <= '1';

T_RESET_TO_X2_o <= s_reset_x2;

--signal assignments to pins

-- T_RESET_TO_X2_o <= x2_reset;

T_FLASH_RP_o <= not s_reset_d;
T_FLASH_OE_o <= '0';
T_FLASH_WP_o <= '1';
T_FLASH_WE_o <= '1';

T_FLASH_ADDRESS_o <= flash_address_config(20 downto 0) when

config_active = '1' else flash_address_rb(20 downto 0);
T_FLASH_CE_A_o <= flash_address_config(21) when config_active = '1'
 else flash_address_rb(21) when readback_active = '1'
 else '1';
T_FLASH_CE_B_o <= not flash_address_config(21) when config_active = '1'
 else not flash_address_rb(21) when readback_active = '1'
 else '1';

s_selectmap_data_i <= T_SELECTMAP_DATA_io;
T_SELECTMAP_DATA_io <= selectmap_write_data when

s_selectmap_WRITE_o = '0' else (others => 'Z');

selectmap_write_data<= selectmap_write_data_readback when

readback_active = '1' else
selectmap_write_data_config;

s_selectmap_WRITE_o <= WRITE_readback when
readback_active = '1' else WRITE_config;

T_SELECTMAP_INIT_o <= INIT_readback when
readback_active = '1' else INIT_config;

T_SELECTMAP_CS_o <= CS_readback when
readback_active = '1' else CS_config;

T_SELECTMAP_WRITE_o <= s_selectmap_WRITE_o;

T_CCLK_o <= CCLK_readback;

--MLS 20051109
data_to_pc104 <= version_out when version_done = '0' else

RB_data_to_pc104 when readback_active = '1' else

118

SC_data_to_pc104 when config_active = '1' else
X2_data_to_pc104;

data_to_pc104_wren <= version_rdy when version_done = '0' else
RB_data_to_pc104_wren when readback_active = '1' else
SC_data_to_pc104_wren when config_active = '1' else
X2_data_to_pc104_wren;

--MLS END 20051109

--MLS 20051109
X2_wr_rdy <= (not pc104_fifo_full) and (not readback_active) and (not

config_active);
RB_wr_rdy <= (not pc104_fifo_full) and (not config_active);
SC_wr_rdy <= (not pc104_fifo_full) and (not readback_active) and

(config_active);
version_wr_rdy <= (not pc104_fifo_full) and (not readback_active) and

(not config_active) ;
--MLS END 20051109

-- MLS 20051109
-- read commands from pc104
process(s_clock, s_reset)
begin
 if (s_reset = '1') then
 data_from_pc104_ack <= '0';
 stall <= '0';
 stall_d <= '0';
 elsif (s_clock'event and s_clock = '1') then
 data_from_pc104_ack <= '0';
 stall_d <= stall;
 if (data_from_pc104_rdy = '1') then
 data_from_pc104_ack <= '1';
 if (data_from_pc104 = x"73") then --lowercase 's'
 stall <= '1';
 elsif (data_from_pc104 = x"72") then --lowercase 'r'
 stall <= '0';
 end if;
 end if;
 end if;
end process;
-- MLS END 20051109

-- Process to choose whether we want to readback or configure But not

both !!!
process(s_clock, s_reset)
begin
 if (s_reset = '1') then

 selectmap_readback_rqst <= '0';
 selectmap_config_rqst <= '0';

 elsif (s_clock'event and s_clock = '1') then

 selectmap_readback_rqst <= '0';
 selectmap_config_rqst <= '0';

 version_done_d <= version_done;

119

-- MLS 20051109
 if ((X2_sm_rb_rqst = '1' or (stall = '0' and stall_d = '1'))

and version_done = '1' and config_active = '0' and
selectmap_config_rqst = '0' and stall = '0') then

 selectmap_readback_rqst <= '1';
 elsif ((version_done = '1' and readback_active = '0' and

selectmap_readback_rqst = '0' and stall = '0') and
((version_done = '1' and version_done_d = '0') or (
X2_sm_config_rqst = '1'))) then

 selectmap_config_rqst <= '1';
 end if;
-- MLS END 20051109

 end if;
end process;

 clockGen0: clockGen port map (

 T_CLOCK_i => T_CLOCK_i,--50MHz oscillator

 CLOCK_o => s_clock, --system 25MHz clock

-- for SR implementation {START}
--if you need a different clock, change clockGen.vhd
 CLOCK_X2_o => s_clock_X2, -- 12.5 MHz clock
 RESET_FROM_X2INT_i => s_reset_x2,
-- for SR implementation {END}

 CLOCK_NOBUFG_o => s_clock_nobufg -- for readback, setting

CCLK

);

 pc104Int0: pc104Int port map (

 T_CLOCK_i => s_clock, --: in std_logic;
 RESET_i => s_reset,
 T_Address_i => T_Address_i, --: in STD_LOGIC_VECTOR (9

downto 0);
 T_IORead_i => T_IORead_i, --: in STD_LOGIC;
 T_IOWRITE_i => T_IOWRITE_i, --: in STD_LOGIC;
 T_AEN_i => T_AEN_i, --: in STD_LOGIC;
 T_Data_io => T_Data_io, --: inout STD_LOGIC_VECTOR (7

downto 0)

 DATA_o => data_from_pc104, --: out

std_logic_vector(7 downto 0);
 DATA_RDY_o => data_from_pc104_rdy, --: out std_logic;
 DATA_ACK_i => data_from_pc104_ack, --: in std_logic;
 DATA_i => data_to_pc104, --: in std_logic_vector(7

downto 0);
 DATA_WREN_i => data_to_pc104_wren,--: in std_logic;
 FIFO_FULL_o => pc104_fifo_full
);

120

version_start <= '1';
version_reset <= not s_reset;

version_0: version
--Start: active high: when '1', ready to begin reading chars
--Rdy: active high: when '1', data available from version_0
--Done: active high: when '1', all chars have been read
 port map (
 Clk => s_clock, -- : in std_logic;
 rstn => version_reset, -- : in

std_logic;
 start => version_start, -- : in

std_logic;
 Rdy => version_rdy, -- : out

std_logic;
 pc104_wr_rdy => version_wr_rdy, -- in std_logic;
 DOut => version_out, -- : out

std_logic_vector(7 downto 0);
 Done => version_done -- : out

std_logic;
);

 SELECTMAP_config0: selectmap_config port map (

 T_CLOCK_i => s_clock, --: in std_logic;
 RESET_i => s_reset, --: in std_logic;

 T_SELECTMAP_INIT_o => INIT_config, --: out std_logic;
 T_SELECTMAP_WRITE_o => WRITE_config, --: out std_logic;
 T_SELECTMAP_CS_o => CS_config, --: out std_logic;
 T_SELECTMAP_DATA_o => selectmap_write_data_config, --:

out std_logic_vector(7 downto 0);

 SM_CONFIG_RQST_i => selectmap_config_rqst, --: in std_logic;
 SM_CONFIG_STATUS_o => config_active, --: out std_logic;

 T_FLASH_DATA_i => T_FLASH_DATA_i, --: in

std_logic_vector(15 downto 0);
 T_FLASH_ADDRESS_o => flash_address_config --: out

std_logic_vector(20 downto 0));

);

 selectmap_readback0: SELECTMAP_readback port map (

 T_CLOCK_i => T_CLOCK_i,
 CLOCK_i => s_clock, --: in std_logic;
 CLOCK_NOBUFG_i => s_clock_nobufg,
 RESET_i => s_reset, --: in std_logic;

 T_CCLK_o => CCLK_readback, --: out std_logic;
 T_SELECTMAP_INIT_o => INIT_readback, --: out std_logic;
 T_SELECTMAP_WRITE_o => WRITE_readback, --: out std_logic;
 T_SELECTMAP_CS_o => CS_readback, --: out std_logic;
 T_SELECTMAP_DATA_o => selectmap_write_data_readback,--: out

std_logic_vector(7 downto 0);

121

 T_SELECTMAP_DATA_i => s_selectmap_data_i, --: in
std_logic_vector(7 downto 0);

 SM_RB_RQST_i => selectmap_readback_rqst, --: in

std_logic;
 SM_RB_STATUS_o => readback_active, --: out std_logic;

 T_FLASH_DATA_i => T_FLASH_DATA_i, --: in

std_logic_vector(15 downto 0);
 T_FLASH_ADDRESS_o => flash_address_rb, --: out

std_logic_vector(20 downto 0);

 PC104_WR_RDY_i => RB_wr_rdy, --: in std_logic;
 PC104_WR_EN_o => RB_data_to_pc104_wren,--: out std_logic;
 DATA_o => RB_data_to_pc104 --: out

std_logic_vector(7 downto 0));

);

 x2Int0 : x2Int port map (

 CLOCK_i => s_clock, --: in std_logic;
 CLOCK_X2_i => s_clock_X2, -- 12.5MHz clock for

Cordic
 RESET_i => ver_done_reset, --: in std_logic;

-- for SR implementation
-- signals going to pins on X2
-- change/add/remove as needed
-- also change cftp_x1.ucf file to match
 T_BITOUT_TO_X2_o => T_BITOUT_TO_X2_o, -- : out

std_logic;
 T_RESET_TO_X2_o => s_reset_x2,
 T_CE_TO_X2_o => T_CE_TO_X2_o, -- : out std_logic;
 T_DOUT_FROM_X2_i => T_DOUT_FROM_X2_i, -- : in

std_logic;
 T_XOR_DOUT_FROM_X2_i => T_XOR_DOUT_FROM_X2_i, -- : in

std_logic;
 T_SUMDIFF_FROM_X2_i => T_SUMDIFF_FROM_X2_i, -- : in

std_logic_vector(31 downto 0);
-- for SR implementation

 DATA_o => X2_data_to_pc104, -- : out

std_logic_vector(7 downto 0);
 DATA_i => data_from_pc104, -- : in

std_logic_vector(7 downto 0);
 PC104_WR_EN_o => X2_data_to_pc104_wren, -- : out

std_logic;
 PC104_WR_RDY_i => X2_wr_rdy, -- : in

std_logic;
 PC104_RD_RDY_i => data_from_pc104_rdy, -- : in

std_logic;
 PC104_RD_ACK_o => X2_data_from_pc104_ack, -- : out

std_logic;

 SM_CONFIG_RQST_o => X2_sm_config_rqst, -- : out std_logic;

122

 SM_CONFIG_STATUS_i => config_active, -- : in
std_logic;

 SM_RB_RQST_o => X2_sm_rb_rqst, -- : out std_logic;
 SM_RB_STATUS_i => readback_active -- : in

std_logic

);

end rtl;

123

L. X1 SHIFT REGISTER CONSTRAINT FILE (VIRTEX I)
(After [17])

Pin assignments for X1

double-check all pin assignments???
these numbers derived from a Mar 2004 diagram

clock is constrained at bottom of this file!!!
system clock, pin 199 on X1
#NET "CLOCK" LOC = "P199";
#NET "CLOCK" PERIOD = 40;
NET "s_clock" PERIOD = 80;
the line above gave errors during "Translate"???

signals to/from X2
NET "T_BITOUT_TO_X2_o" LOC = "p153"; # X1_X2_AUX<0>
NET "T_CE_TO_X2_o" LOC = "p151"; # X1_X2_AUX<1>
NET "T_RESET_TO_X2_o" LOC = "p150"; # X1_X2_AUX<2>
NET "XXX" LOC = "p149"; # X1_X2_AUX<3>
NET "XXX" LOC = "p147"; # X1_X2_AUX<4>
NET "XXX" LOC = "p146"; # X1_X2_AUX<5>
NET "XXX" LOC = "p145"; # X1_X2_AUX<6>
NET "XXX" LOC = "p144"; # X1_X2_AUX<7>
NET "XXX" LOC = "p135"; # X1_X2_AUX<8>
NET "XXX" LOC = "p134"; # X1_X2_AUX<9>
NET "T_SUMDIFF_FROM_X2_i<0>" LOC = "p132"; # X1_X2_AUX<10>
NET "T_DOUT_FROM_X2_i" LOC = "p127"; # X1_X2_AUX<11>
NET "T_SUMDIFF_FROM_X2_i<1>" LOC = "p126"; # X1_X2_AUX<12>
NET "T_XOR_DOUT_FROM_X2_i" LOC = "p120"; # X1_X2_AUX<13>
NET "T_SUMDIFF_FROM_X2_i<2>" LOC = "p119"; # X1_X2_AUX<14>
#NET "T_DOUT_FROM_X2_i<2>" LOC = "p112"; # X1_X2_AUX<15>
NET "T_SUMDIFF_FROM_X2_i<3>" LOC = "p111"; # X1_X2_AUX<16>
#NET "T_DOUT_FROM_X2_i<3>" LOC = "p110"; # X1_X2_AUX<17>
NET "T_SUMDIFF_FROM_X2_i<4>" LOC = "p109"; # X1_X2_AUX<18>
#NET "T_DOUT_FROM_X2_i<4>" LOC = "p108"; # X1_X2_AUX<19>
NET "T_SUMDIFF_FROM_X2_i<5>" LOC = "p107"; # X1_X2_AUX<20>
#NET "T_DOUT_FROM_X2_i<5>" LOC = "p105"; # X1_X2_AUX<21>
NET "T_SUMDIFF_FROM_X2_i<6>" LOC = "p104"; # X1_X2_AUX<22>
#NET "T_DOUT_FROM_X2_i<6>" LOC = "p103"; # X1_X2_AUX<23>
NET "T_SUMDIFF_FROM_X2_i<7>" LOC = "p102"; # X1_X2_AUX<24>
#NET "T_DOUT_FROM_X2_i<7>" LOC = "p101"; # X1_X2_AUX<25>
NET "T_SUMDIFF_FROM_X2_i<8>" LOC = "p98"; # X1_X2_AUX<26>
#NET "T_DOUT_FROM_X2_i<8>" LOC = "p97"; # X1_X2_AUX<27>
NET "T_SUMDIFF_FROM_X2_i<9>" LOC = "p96"; # X1_X2_AUX<28>
#NET "T_DOUT_FROM_X2_i<9>" LOC = "p94"; # X1_X2_AUX<29>
NET "T_SUMDIFF_FROM_X2_i<10>" LOC = "p93"; # X1_X2_AUX<30>
#NET "T_DOUT_FROM_X2_i<10>" LOC = "p92"; # X1_X2_AUX<31>
NET "T_SUMDIFF_FROM_X2_i<11>" LOC = "p91"; # X1_X2_AUX<32>
#NET "T_DOUT_FROM_X2_i<11>" LOC = "p90"; # X1_X2_AUX<33>
NET "T_SUMDIFF_FROM_X2_i<12>" LOC = "p89"; # X1_X2_AUX<34>
#NET "T_DOUT_FROM_X2_i<12>" LOC = "p88"; # X1_X2_AUX<35>
NET "T_SUMDIFF_FROM_X2_i<13>" LOC = "p82"; # X1_X2_AUX<36>
#NET "T_DOUT_FROM_X2_i<13>" LOC = "p81"; # X1_X2_AUX<37>
NET "T_SUMDIFF_FROM_X2_i<14>" LOC = "p80"; # X1_X2_AUX<38>

124

#NET "T_DOUT_FROM_X2_i<14>" LOC = "p79"; # X1_X2_AUX<39>
NET "T_SUMDIFF_FROM_X2_i<15>" LOC = "p78"; # X1_X2_AUX<40>
#NET "T_DOUT_FROM_X2_i<15>" LOC = "p77"; # X1_X2_AUX<41>
NET "XXX" LOC = "p75"; # X1_X2_AUX<42>
NET "XXX" LOC = "p74"; # X1_X2_AUX<43>
NET "XXX" LOC = "p71"; # X1_X2_AUX<44>

#PACE: Start of Constraints generated by PACE

#PACE: Start of PACE I/O Pin Assignments
#Flash Interface Signals
NET "T_Flash_data_i<0>" LOC = "P207";
NET "T_Flash_data_i<1>" LOC = "P209";
NET "T_Flash_data_i<2>" LOC = "P212";
NET "T_Flash_data_i<3>" LOC = "P216";
NET "T_Flash_data_i<4>" LOC = "P218";
NET "T_Flash_data_i<5>" LOC = "P220";
NET "T_Flash_data_i<6>" LOC = "P223";
NET "T_Flash_data_i<7>" LOC = "P226";
NET "T_Flash_data_i<8>" LOC = "P208";
NET "T_Flash_data_i<9>" LOC = "P211";
NET "T_Flash_data_i<10>" LOC = "P213";
NET "T_Flash_data_i<11>" LOC = "P217";
NET "T_Flash_data_i<12>" LOC = "P219";
NET "T_Flash_data_i<13>" LOC = "P222";
NET "T_Flash_data_i<14>" LOC = "P224";
NET "T_Flash_data_i<15>" LOC = "P225";
NET "T_Flash_address_o<0>" LOC = "P206";
NET "T_Flash_address_o<1>" LOC = "P205";
NET "T_Flash_address_o<2>" LOC = "P204";
NET "T_Flash_address_o<3>" LOC = "P198";
NET "T_Flash_address_o<4>" LOC = "P197";
NET "T_Flash_address_o<5>" LOC = "P196";
NET "T_Flash_address_o<6>" LOC = "P195";
NET "T_Flash_address_o<7>" LOC = "P194";
NET "T_Flash_address_o<8>" LOC = "P182";
NET "T_Flash_address_o<9>" LOC = "P183";
NET "T_Flash_address_o<10>" LOC = "P184";
NET "T_Flash_address_o<11>" LOC = "P185";
NET "T_Flash_address_o<12>" LOC = "P188";
NET "T_Flash_address_o<13>" LOC = "P189";
NET "T_Flash_address_o<14>" LOC = "P190";
NET "T_Flash_address_o<15>" LOC = "P192";
NET "T_Flash_address_o<16>" LOC = "P193";
NET "T_Flash_address_o<17>" LOC = "P177";
NET "T_Flash_address_o<18>" LOC = "P178";
NET "T_Flash_address_o<19>" LOC = "P179";
NET "T_Flash_address_o<20>" LOC = "P181";
NET "T_Flash_WE_o" LOC = "P165";
NET "T_Flash_RP_o" LOC = "P166";
NET "T_Flash_WP_o" LOC = "P167";
NET "T_Flash_CE_A_o" LOC = "P164";
NET "T_Flash_CE_B_o" LOC = "P125"; # doesn't do anything!
NET "T_Flash_OE_o" LOC = "P162";

#PC/104 Interface Signals
NET "T_Data_io<0>" LOC = "P11"; #ISA Data Bit 0 p. 11

125

NET "T_Data_io<1>" LOC = "P10"; #ISA Data Bit 1 p. 10
NET "T_Data_io<2>" LOC = "P9"; #ISA Data Bit 2 p. 09
NET "T_Data_io<3>" LOC = "P7"; #ISA Data Bit 3 p. 07
NET "T_Data_io<4>" LOC = "P6"; #ISA Data Bit 4 p. 06
NET "T_Data_io<5>" LOC = "P5"; #ISA Data Bit 5 p. 05
NET "T_Data_io<6>" LOC = "P4"; #ISA Data Bit 6 p. 04
NET "T_Data_io<7>" LOC = "P3"; #ISA Data Bit 7 p. 03
NET "T_Address_i<0>" LOC = "P47"; #ISA Address 0 p. 47
NET "T_Address_i<1>" LOC = "P46"; #ISA Address 1 p. 46
NET "T_Address_i<2>" LOC = "P45"; #ISA Address 2 p. 45
NET "T_Address_i<3>" LOC = "P39"; #ISA Address 3 p. 39
NET "T_Address_i<4>" LOC = "P36"; #ISA Address 4 p. 36
NET "T_Address_i<5>" LOC = "P34"; #ISA Address 5 p. 34
NET "T_Address_i<6>" LOC = "P32"; #ISA Address 6 p. 32
NET "T_Address_i<7>" LOC = "P29"; #ISA Address 7 p. 29
NET "T_Address_i<8>" LOC = "P25"; #ISA Address 8 p. 25
NET "T_Address_i<9>" LOC = "P23"; #ISA Address 9 p. 23
NET "T_IORead_i" LOC = "P19"; #IO Read p. 19
NET "T_IOWrite_i" LOC = "P17"; #IO Write p. 17
NET "T_AEN_i" LOC = "P13"; #Address Enable p. 13

Selectmap interface signals
NET "T_CCLK_o" LOC = "P69"; #Drive X2's CCLK pin
NET "T_SELECTMAP_INIT_o" LOC = "P117"; #Drive X2's INIT pin
NET "T_SELECTMAP_WRITE_o" LOC = "P176"; #Drive X2's WRITE pin
NET "T_SELECTMAP_CS_o" LOC = "P175"; #Drive X2's CS pin

MLS swap pins so D(0) is LSB
NET "T_SELECTMAP_DATA_io<7>" LOC = "P169";
NET "T_SELECTMAP_DATA_io<6>" LOC = "P128";
NET "T_SELECTMAP_DATA_io<5>" LOC = "P131";
NET "T_SELECTMAP_DATA_io<4>" LOC = "P137";
NET "T_SELECTMAP_DATA_io<3>" LOC = "P148";
NET "T_SELECTMAP_DATA_io<2>" LOC = "P155";
NET "T_SELECTMAP_DATA_io<1>" LOC = "P158";
NET "T_SELECTMAP_DATA_io<0>" LOC = "P168";
#NET "SELECTMAP_BUSY_i" LOC = "P118";

NET "T_clock_i" LOC = "P199";
NET "T_x2_mode<0>" LOC = "P160";
NET "T_x2_mode<1>" LOC = "P159";
NET "T_x2_mode<2>" LOC = "P161";
NET "t_clock_i" PERIOD = 20;
NET "s_clock" PERIOD = 40;
NET "s_clock_x2" PERIOD = 80;

#NET "T_SELECTMAP_DATA_io<7>" TNM="smpins";
#NET "T_SELECTMAP_DATA_io<6>" TNM="smpins";
#NET "T_SELECTMAP_DATA_io<5>" TNM="smpins";
#NET "T_SELECTMAP_DATA_io<4>" TNM="smpins";
#NET "T_SELECTMAP_DATA_io<3>" TNM="smpins";
#NET "T_SELECTMAP_DATA_io<2>" TNM="smpins";
#NET "T_SELECTMAP_DATA_io<1>" TNM="smpins";
#NET "T_SELECTMAP_DATA_io<0>" TNM="smpins";
#NET "T_SELECTMAP_INIT_o" TNM="smpins";
#NET "T_SELECTMAP_WRITE_o" TNM="smpins";
#NET "T_SELECTMAP_CS_o" TNM="smpins";

126

#TIMESPEC "TS_1" = FROM : FFS : TO : PADS : 5 ns;

#TIMEGRP "smpins" OFFSET=OUT 5 AFTER "s_clock";
#TIMEGRP "smpins" OFFSET=IN 5 BEFORE "s_clock";

"from_x2..." and "busy_out" and "SELECTMAP_BUSY_i" have been

commented out!!!
#The X1_X2_AUX pins are defined at top of file!!!
#NET "busy_out" LOC = "P49"; #io pin 0
#NET "output_from_x2_8" LOC = "P64"; #io pin 10
#NET "TP1" LOC = "P70"; #io pin 15
#NET "TP1" FAST ;
#NET "TP2" LOC = "P65"; #io pin 11
#NET "TP2" FAST ;
#NET "TP3" LOC = "P64"; #io pin 10
#NET "TP3" FAST ;

127

M. X1 SHIFT REGISTER CONSTRAINT FILE (VIRTEX II)
(After [17])

Pin checks, X1 Virtex1 Part on CFTP1 vs CFTP2:

PC/104:
DATA(7 downto 0) same
ADDR(9 downto 0) same
IOW, IOR, AEN same

FLASH:
DATA(15 downto 0) same
ADDR(20 downto 0) same
WE, WP, RP, CE_A, CE_B, OE same
NOTE: Added second flash to CFTP2. FLASH_CE_B added
to P125. Just have this pin on both boards,
P125 isn't connected to anything on CFTP1
CFTP2 board has VPPEN on pin 60!!!! need to pull low
in order to erase or write flash!!!
new CFTP1 board will have similar pin, old CFTP1
does not (EN always pulled active on Flash)
CFTP2 board also has a different Flash device,
auto-locking blocks. schem says both CFTP1 and CFTP2
have C3 device, but CFTP1 actually has B3 device.
CFTP2 device is top boot, CFTP1 device is bottom boot

X1/X2 AUX:
double checked pin numbers, looks ok
all pins are the same between CFTP1 and CFTP2 board,
*****except X1/X2 Aux 42 is P75 on CFTP1 and P125 on CFTP2
*****MLS 20051026: X1/X2 Aux 42 (P125) has been tied to CE pin
for Flash_B!! DO NOT USE AS AUX PIN!!!
CFTP2 has no X1/X2 Aux 43 or 44 (P74 and P51 on
CFTP1, respectively)

SELECTMAP:
Drive X2's CCLK:
on old CFTP1: jumpered P69 to X2's CCLK
on CFTP2: Dedicated User I/O on X1 (P65)
connected to X2's CCLK
Drive X2's INIT, WRITE, and CS pins
on old CFTP1: use X1's INIT(P117), WR(P176), CS(P175)
pins (turn user I/O after config)
on CFTP2: use dedicated I/O (P124, P63, P64, respectively)
Drive X2's Data lines
on old CFTP1: connect D0 on X1 to D7 on X2, D1 to D6, etc
(turn user io after config)
In ucf file, I swap values because D7 is the LSB
in Selectmap mode, and I want D0 to be the LSB,
so I set it up so my signal SELECTMAP_DATA_io(0) is
connected to the actually X2_DATA(7) pin, etc
on CFTP2: dedicated user io on X1 connected to X2's pins
same thing with MSB/LSB swap
D0=68,D1=69,D2=70,D3=71,D4=74,D5=75,D6=121,D7=122

MODE PINS: SAME

128

CLOCK: SAME (oscillator on P199 on X1 FPGA)

Pin assignments for X1, compatible with Virtex-II

double-check all pin assignments???
these numbers derived from a May 2005 diagram

clock is constrained at bottom of this file!!!
system clock oscillator, pin 199 on X1
NET "T_CLOCK_i" LOC = "P199";
NET "T_CLOCK_i" PERIOD = 40;
NET "s_clock" PERIOD = 80;
the line above gave errors during "Translate"???

START signals to/from X2
NET "T_BITOUT_TO_X2_o" LOC = "p153"; # X1_X2_AUX<0>
NET "T_CE_TO_X2_o" LOC = "p151"; # X1_X2_AUX<1>
NET "T_RESET_TO_X2_o" LOC = "p150"; # X1_X2_AUX<2>
NET "XXX" LOC = "p149"; # X1_X2_AUX<3>
NET "XXX" LOC = "p147"; # X1_X2_AUX<4>
NET "XXX" LOC = "p146"; # X1_X2_AUX<5>
NET "XXX" LOC = "p145"; # X1_X2_AUX<6>
NET "XXX" LOC = "p144"; # X1_X2_AUX<7>
NET "XXX" LOC = "p135"; # X1_X2_AUX<8>
NET "XXX" LOC = "p134"; # X1_X2_AUX<9>
NET "T_SUMDIFF_FROM_X2_i<0>" LOC = "p132"; # X1_X2_AUX<10>
NET "T_DOUT_FROM_X2_i" LOC = "p127"; # X1_X2_AUX<11>
NET "T_SUMDIFF_FROM_X2_i<1>" LOC = "p126"; # X1_X2_AUX<12>
NET "T_XOR_DOUT_FROM_X2_i" LOC = "p120"; # X1_X2_AUX<13>
NET "T_SUMDIFF_FROM_X2_i<2>" LOC = "p119"; # X1_X2_AUX<14>
#NET "T_DOUT_FROM_X2_i<2>" LOC = "p112"; # X1_X2_AUX<15>
NET "T_SUMDIFF_FROM_X2_i<3>" LOC = "p111"; # X1_X2_AUX<16>
#NET "T_DOUT_FROM_X2_i<3>" LOC = "p110"; # X1_X2_AUX<17>
NET "T_SUMDIFF_FROM_X2_i<4>" LOC = "p109"; # X1_X2_AUX<18>
#NET "T_DOUT_FROM_X2_i<4>" LOC = "p108"; # X1_X2_AUX<19>
NET "T_SUMDIFF_FROM_X2_i<5>" LOC = "p107"; # X1_X2_AUX<20>
#NET "T_DOUT_FROM_X2_i<5>" LOC = "p105"; # X1_X2_AUX<21>
NET "T_SUMDIFF_FROM_X2_i<6>" LOC = "p104"; # X1_X2_AUX<22>
#NET "T_DOUT_FROM_X2_i<6>" LOC = "p103"; # X1_X2_AUX<23>
NET "T_SUMDIFF_FROM_X2_i<7>" LOC = "p102"; # X1_X2_AUX<24>
#NET "T_DOUT_FROM_X2_i<7>" LOC = "p101"; # X1_X2_AUX<25>
NET "T_SUMDIFF_FROM_X2_i<8>" LOC = "p98"; # X1_X2_AUX<26>
#NET "T_DOUT_FROM_X2_i<8>" LOC = "p97"; # X1_X2_AUX<27>
NET "T_SUMDIFF_FROM_X2_i<9>" LOC = "p96"; # X1_X2_AUX<28>
#NET "T_DOUT_FROM_X2_i<9>" LOC = "p94"; # X1_X2_AUX<29>
NET "T_SUMDIFF_FROM_X2_i<10>" LOC = "p93"; # X1_X2_AUX<30>
#NET "T_DOUT_FROM_X2_i<10>" LOC = "p92"; # X1_X2_AUX<31>
NET "T_SUMDIFF_FROM_X2_i<11>" LOC = "p91"; # X1_X2_AUX<32>
#NET "T_DOUT_FROM_X2_i<11>" LOC = "p90"; # X1_X2_AUX<33>
NET "T_SUMDIFF_FROM_X2_i<12>" LOC = "p89"; # X1_X2_AUX<34>
#NET "T_DOUT_FROM_X2_i<12>" LOC = "p88"; # X1_X2_AUX<35>
NET "T_SUMDIFF_FROM_X2_i<13>" LOC = "p82"; # X1_X2_AUX<36>
#NET "T_DOUT_FROM_X2_i<13>" LOC = "p81"; # X1_X2_AUX<37>
NET "T_SUMDIFF_FROM_X2_i<14>" LOC = "p80"; # X1_X2_AUX<38>
#NET "T_DOUT_FROM_X2_i<14>" LOC = "p79"; # X1_X2_AUX<39>
NET "T_SUMDIFF_FROM_X2_i<15>" LOC = "p78"; # X1_X2_AUX<40>

129

#NET "T_DOUT_FROM_X2_i<15>" LOC = "p77"; # X1_X2_AUX<41>
END signals to/from X2
#NET "CE for FLASH B on CFTP2 Board!!!!" LOC = "p125"; # DO NOT USE!!!
NET "XXX" LOC = "XXX"; # X1_X2_AUX<43> not on Virtex-II board
NET "XXX" LOC = "XXX"; # X1_X2_AUX<44> not on Virtex-II board

#PACE: Start of Constraints generated by PACE

#PACE: Start of PACE I/O Pin Assignments
#Flash Interface Signals
NET "T_Flash_data_i<0>" LOC = "P207";
NET "T_Flash_data_i<1>" LOC = "P209";
NET "T_Flash_data_i<2>" LOC = "P212";
NET "T_Flash_data_i<3>" LOC = "P216";
NET "T_Flash_data_i<4>" LOC = "P218";
NET "T_Flash_data_i<5>" LOC = "P220";
NET "T_Flash_data_i<6>" LOC = "P223";
NET "T_Flash_data_i<7>" LOC = "P226";
NET "T_Flash_data_i<8>" LOC = "P208";
NET "T_Flash_data_i<9>" LOC = "P211";
NET "T_Flash_data_i<10>" LOC = "P213";
NET "T_Flash_data_i<11>" LOC = "P217";
NET "T_Flash_data_i<12>" LOC = "P219";
NET "T_Flash_data_i<13>" LOC = "P222";
NET "T_Flash_data_i<14>" LOC = "P224";
NET "T_Flash_data_i<15>" LOC = "P225";
NET "T_Flash_address_o<0>" LOC = "P206";
NET "T_Flash_address_o<1>" LOC = "P205";
NET "T_Flash_address_o<2>" LOC = "P204";
NET "T_Flash_address_o<3>" LOC = "P198";
NET "T_Flash_address_o<4>" LOC = "P197";
NET "T_Flash_address_o<5>" LOC = "P196";
NET "T_Flash_address_o<6>" LOC = "P195";
NET "T_Flash_address_o<7>" LOC = "P194";
NET "T_Flash_address_o<8>" LOC = "P182";
NET "T_Flash_address_o<9>" LOC = "P183";
NET "T_Flash_address_o<10>" LOC = "P184";
NET "T_Flash_address_o<11>" LOC = "P185";
NET "T_Flash_address_o<12>" LOC = "P188";
NET "T_Flash_address_o<13>" LOC = "P189";
NET "T_Flash_address_o<14>" LOC = "P190";
NET "T_Flash_address_o<15>" LOC = "P192";
NET "T_Flash_address_o<16>" LOC = "P193";
NET "T_Flash_address_o<17>" LOC = "P177";
NET "T_Flash_address_o<18>" LOC = "P178";
NET "T_Flash_address_o<19>" LOC = "P179";
NET "T_Flash_address_o<20>" LOC = "P181";
NET "T_Flash_WE_o" LOC = "P165";
NET "T_Flash_RP_o" LOC = "P166";
NET "T_Flash_WP_o" LOC = "P167";
NET "T_Flash_CE_A_o" LOC = "P164";
NET "T_Flash_CE_B_o" LOC = "P125";
NET "T_Flash_OE_o" LOC = "P162";

#PC/104 Interface Signals
NET "T_Data_io<0>" LOC = "P11"; #ISA Data Bit 0 p. 11
NET "T_Data_io<1>" LOC = "P10"; #ISA Data Bit 1 p. 10

130

NET "T_Data_io<2>" LOC = "P9"; #ISA Data Bit 2 p. 09
NET "T_Data_io<3>" LOC = "P7"; #ISA Data Bit 3 p. 07
NET "T_Data_io<4>" LOC = "P6"; #ISA Data Bit 4 p. 06
NET "T_Data_io<5>" LOC = "P5"; #ISA Data Bit 5 p. 05
NET "T_Data_io<6>" LOC = "P4"; #ISA Data Bit 6 p. 04
NET "T_Data_io<7>" LOC = "P3"; #ISA Data Bit 7 p. 03
NET "T_Address_i<0>" LOC = "P47"; #ISA Address 0 p. 47
NET "T_Address_i<1>" LOC = "P46"; #ISA Address 1 p. 46
NET "T_Address_i<2>" LOC = "P45"; #ISA Address 2 p. 45
NET "T_Address_i<3>" LOC = "P39"; #ISA Address 3 p. 39
NET "T_Address_i<4>" LOC = "P36"; #ISA Address 4 p. 36
NET "T_Address_i<5>" LOC = "P34"; #ISA Address 5 p. 34
NET "T_Address_i<6>" LOC = "P32"; #ISA Address 6 p. 32
NET "T_Address_i<7>" LOC = "P29"; #ISA Address 7 p. 29
NET "T_Address_i<8>" LOC = "P25"; #ISA Address 8 p. 25
NET "T_Address_i<9>" LOC = "P23"; #ISA Address 9 p. 23
NET "T_IORead_i" LOC = "P19"; #IO Read p. 19
NET "T_IOWrite_i" LOC = "P17"; #IO Write p. 17
NET "T_AEN_i" LOC = "P13"; #Address Enable p. 13

Selectmap interface signals
NET "T_CCLK_o" LOC = "P65"; #Drive X2's CCLK pin, CFTP2 ok MLS
NET "T_SELECTMAP_INIT_o" LOC = "P124"; #Drive X2's INIT pin, CFTP2 ok
NET "T_SELECTMAP_WRITE_o" LOC = "P63"; #Drive X2's WRITE pin, CFTP2 ok
NET "T_SELECTMAP_CS_o" LOC = "P64"; #Drive X2's CS pin, CFTP2 ok MLS

MLS swap pins so D(0) is LSB
NET "T_SELECTMAP_DATA_io<7>" LOC = "P68"; #Drive X2's D0, CFTP2 ok MLS
NET "T_SELECTMAP_DATA_io<6>" LOC = "P69"; #Drive X2's D1, CFTP2 ok MLS
NET "T_SELECTMAP_DATA_io<5>" LOC = "P70"; #Drive X2's D2, CFTP2 ok MLS
NET "T_SELECTMAP_DATA_io<4>" LOC = "P71"; #Drive X2's D3, CFTP2 ok MLS
NET "T_SELECTMAP_DATA_io<3>" LOC = "P74"; #Drive X2's D4, CFTP2 ok MLS
NET "T_SELECTMAP_DATA_io<2>" LOC = "P75"; #Drive X2's D5, CFTP2 ok MLS
NET "T_SELECTMAP_DATA_io<1>" LOC = "P121"; #Drive X2's D6, CFTP2 ok MLS
NET "T_SELECTMAP_DATA_io<0>" LOC = "P122"; #Drive X2's D7, CFTP2 ok MLS

#NET "SELECTMAP_BUSY_i" LOC = "P118";
NET "T_clock_i" LOC = "P199";
NET "T_x2_mode<0>" LOC = "P160";
NET "T_x2_mode<1>" LOC = "P159";
NET "T_x2_mode<2>" LOC = "P161";
NET "t_clock_i" PERIOD = 20;
NET "s_clock" PERIOD = 40;
NET "s_clock_X2" PERIOD = 80;

"busy_out" and "SELECTMAP_BUSY_i" have been commented out!!!

#The X1_X2_AUX pins are defined at top of file!!!
#NET "busy_out" LOC = "P49"; #io pin 0
#NET "output_from_x2_8" LOC = "P64"; #io pin 10
#NET "TP1" LOC = "P70"; #io pin 15
#NET "TP1" FAST ;
#NET "TP2" LOC = "P65"; #io pin 11
#NET "TP2" FAST ;
#NET "TP3" LOC = "P64"; #io pin 10
#NET "TP3" FAST ;

131

N. SHIFT REGISTER MODULE WITH SRL16E MACRO AND FLIP-FLOPS

-- filename: sr_testing.vhd
-- author: James Coudeyras (2005)
--
-- This file is for the SRL16E macro plus flip-flop (SRL+1)
-- used for X2 which will be used as the initial test
-- for proton radiation testing at UC-Davis.
--

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity sr_testing is

 generic (WIDTH : integer := 2040); -- should yield 120 SRL16/FF

pairs
 -- SR length (2400 for C1, 300 for C1-no SRL, , 12000

for C2)

 Port (clock : in std_logic;
 reset : in std_logic;
 ce : in std_logic;
 din : in std_logic;
 dout : out std_logic;
 sumdiff : out std_logic);

end sr_testing;

architecture sr_sequence of sr_testing is
 signal reg_a : std_logic_vector (WIDTH-1 downto 0);
 signal reg_b : std_logic_vector (WIDTH-1 downto 0);

begin

process (clock, reset)
begin
 if (reset = '1') then

 sumdiff <= '0';
 dout <= '0';

 elsif (clock'event and clock='1') then

 sumdiff <= '0';

 if ce='1' then
 reg_a <= din & reg_a(WIDTH-1 downto 1);
 reg_b <= din & reg_b(WIDTH-1 downto 1);
 end if;
-- LABEL1:
 for I in 1 to (WIDTH/17) loop
 if ((reg_a((I-1)*17) xor reg_b((I-1)*17)) = '1') or

132

 ((reg_a(((I-1)*17)+1) xor
reg_b(((I-1)*17)+1)) = '1') then

 sumdiff <= '1';
 end if;
 end loop;

 dout <= reg_a(0);

 end if;

end process;

end sr_sequence;

133

O. SHIFT REGISTER MODULE FLIP-FLOPS ONLY

-- filename: sr_testing.vhd
-- author: James Coudeyras (2005)
--
-- This file is for the flip-flop only shift register (noSRL)
-- used for X2 which will be used as the initial test
-- for proton radiation testing at UC-Davis.
--

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity sr_testing is

 generic (WIDTH : integer := 320);
 -- SR length (2400 for C1, 300 for C1-no SRL, , 12000

for C2)

 Port (clock : in std_logic;
 reset : in std_logic;
 ce : in std_logic;
 din : in std_logic;
 dout : out std_logic;
 sumdiff : out std_logic);

end sr_testing;

architecture sr_sequence of sr_testing is
 signal reg_a : std_logic_vector (WIDTH-1 downto 0);
 signal reg_b : std_logic_vector (WIDTH-1 downto 0);

begin

process (clock, reset)
begin
 if (reset = '1') then

 sumdiff <= '0';
 dout <= '0';

 elsif (clock'event and clock='1') then

 sumdiff <= '0';

 if ce='1' then
 reg_a <= din & reg_a(WIDTH-1 downto 1);
 reg_b <= din & reg_b(WIDTH-1 downto 1);
 end if;
-- LABEL1:
 for I in 1 to (WIDTH/16) loop
 if ((reg_a((I-1)*16) xor reg_b((I-1)*16)) = '1') then
 sumdiff <= '1';
 end if;

134

 end loop;

 dout <= reg_a(0);

 end if;

end process;

end sr_sequence;

135

P. MATLAB SCRIPT FOR DATA ANALYSIS
% Author: Josh Snodgrass, PhD Candidate, Naval Postgraduate School
% Nov 2005
% Reads ASCII log file from CFTP testing and provides SM Readback stats
% Modified: James Coudeyras, EE Master's Student, NPS
% Added SEU count and rate.

clear all; close all; clc;

fname='sr_SRLp1_c1_run2.log';
fdescrip = 'SRL & FF, Virtex 1, run 2';

fid=fopen(fname,'r');
if (fid==-1); error('Invalid filename'); end;
frewind(fid);

SMold=0;
SMnew=0;
SMstart=0;
SMnewtrend=[];
zero2one=0;
one2zero=0;
NumRecon=0;

logline=[];

while (~feof(fid))
 logline=fgetl(fid);

 if (length(logline)>18)
 if (logline(1:18)=='Selectmap Reconfig')
 SMold=0;
 SMarray=[];
 NumRecon = NumRecon + 1;
 elseif (logline(1:18)=='Selectmap Readback')
 SMstart=1;
 SMnew=0;
 elseif (logline(1:5)=='Read:')
 NewEntry=1; % assume we have a new entry
 for (i=1:1:SMold+SMnew)
 if (logline(1:50)==SMarray(i,1:50)) % all lines have > 50
characters
 NewEntry=0; % negate flag if entry already exists
 end;
 end;
 if (NewEntry)
 SMnew=SMnew+1;
 SMarray(SMold+SMnew,1:length(logline))=logline;
 %disp(logline); % show each of the new SEUs
 badbyte=dec2bin2(hex2dec(logline(7:8)));
 goodbyte=dec2bin2(hex2dec(logline(21:22)));
 zero2one=zero2one+sum((badbyte-goodbyte)>0);
 one2zero=one2zero+sum((goodbyte-badbyte)>0);
 if (abs(sum(xor(badbyte,goodbyte)))>1)
 disp(logline),

136

 end
 end
 end
 elseif strcmp(logline,'')&(SMstart)
 fprintf('Selectmap Readback #%i\n',length(SMnewtrend)+1);
 fprintf('Total SEUs = Old SEUs + New SEUs\n');
 fprintf(' %-4i = %-4i + %-
4i\n',SMold+SMnew,SMold,SMnew);
 fprintf('# of 0->1 = %i, # of 1->0 = %i\n\n',zero2one,one2zero);
 SMold=SMold+SMnew;
 SMnewtrend(length(SMnewtrend)+1)=SMnew;
 SMstart=0;
 end
end

fclose('all');

figure(1)
stem(SMnewtrend,'b');
title(['SEUs Detected via Selectmap Readback, design: ' fdescrip]);
xlabel('Selectmap Readback Index @ 30 sec interval');
ylabel('SEUs per interval');
text(10,6,'Lower Flux')

NEW_ERR = []; m = 0;
NEW_RERR_ind = find(SMnewtrend);
for i=1:length(NEW_RERR_ind)
 m = NEW_RERR_ind(i);
 NEW_RERR(i) = SMnewtrend(m);
end
NEW_RERR_tot = sum(NEW_RERR)
NEW_RERR_ave = NEW_RERR_tot/length(NEW_RERR_ind)

RECON_ERR = zeros(1,length(SMnewtrend));
k = 1;
for i = 1:length(SMnewtrend)
 if (SMnewtrend(i) >= 1)
 RECON_ERR(k) = RECON_ERR(k) + SMnewtrend(i);
 else
 k = k + 1;
 end
end
RECONlength_ind = find(RECON_ERR);
RECONlength = max(RECONlength_ind);
%RECONstart = min(RECONlength_ind);
RECON_ERR = RECON_ERR(1:RECONlength);
NumRecon
ERR_btwn_RECON_ave = sum(RECON_ERR)/NumRecon

figure(2)
stem(RECON_ERR,'b');
title(['# of SEUs before Reconfiguration, design: ' fdescrip]);
xlabel('Reconfiguration'); ylabel('SEUs');
text(1.5,65,'Lower Flux')

137

LIST OF REFERENCES

1. “Moore’s Law.” 2005. Wikipedia, updated 29 November 2005.

http://en.wikipedia.org/wiki/Moore's_law [29 November 2005].

2. Fuller, Earl, Michael Caffrey, Anthony Salazar, Carl Carmichael, Joe Fabula.

2000. “Radiation Characterization, and SEU Mitigation, of the Virtex FPGA for

Space-Based Reconfigurable Computing.” Proceedings of the 2nd Military and

Aerospace Applications of Programmable Devices (MAPLD) and Technologies

Conference Proceedings. September.

3. Guccione, Steve. Delon Levi, Prasanna. Sundararajan. 1999. “JBits: A Java-based

Interface for Reconfigurable Computing.” MAPLD 1999 Proceedings. September.

4. Lashomb, Peter A. 2002. Triple Modular Redundant (TMR) Microprocessor

System for Field-Programmable Gate Array (FPGA) Implementation. Master’s

Thesis. Naval Postgraduate School.

5. Ebert, Dean A., Charles A. Hulme, Herschel H. Loomis, Alan A. Ross. 2003.

“Configurable Fault Tolerant Processor (CFTP) for Space-Based Applications.”

17th Annual AIAA/USU Conference on Small Satellites. SSC03-XI-5. August.

6. Snodgrass, Josh. 2005. Notes on CORDIC Algorithms. Naval Postgraduate

School, Monterey.

7. Majewicz, Pete. 2005. Implementation of a Configurable Fault Tolerant Processor

(CFTP) Using Internal Triple Modular Redundancy (TMR). Master’s Thesis.

Naval Postgraduate School.

8. Hulme, Charles A. 2003. Testing And Evaluation Of The Configurable Fault

Tolerant Processor (CFTP) For Space-Based Applications. Master’s Thesis. Naval

Postgraduate School.

9. Wertz, James, and Wiley Larson. 2003. Space Mission Analysis and Design. El

Segundo: Microcosm Press.

138

10. Fuller, Earl, Michael Caffrey, Anthony Salazar, Carl Carmichael, Joe Fabula.

2002. “Radiation Testing Update, SEU Mitigation, and Availability Analysis of

the Virtex FPGA for Space Reconfigurable Computing.” MAPLD 2002

Proceedings. September.

11. Xilinx JBits 2.8 SDK for Virtex. 1999. Xilinx, Incorporated. San Jose, CA.

12. Rigmaiden, David. 2005. Interview by author, 31 October, Monterey.

Transcript. Naval Postgraduate School, Monterey.

13. Loomis, Herschel and Alan Ross. 2005. “Configurable Fault Tolerant Processor

for High-Radiation Orbit” Status Report to Space Systems Academic Group. 17

November. Naval Postgraduate School, Monterey.

14. Xilinx Integrated Software Environment (ISE) Ver. 6.3i. 2004. Xilinx,

Incorporated. San Jose, CA.

15. Wu, C. Thomas. 2006. An Introduction to Object-Oriented Programming with

Java. Boston: McGraw Hill.

16. Model Technology ModelSim SE 5.8a. 2003. Mentor Graphics. Wilsonville, OR.

17. Surratt, Mindy. 2005. CFTP Development Environment Technical Manual. Naval

Postgraduate School, Monterey.

18. JTAG Programmer Guide. 2005. Xilinx, Incorporated.

http://toolbox.xilinx.com/docsan/data/alliance/jtg/jtg.htm. [4 December 2005].

19. Toth, Frank. 2001. “iMPACT - New Configuration and Programming Software.”

XCell Journal Online. Issue 41.

http://www.xilinx.com/publications/products/software/xc_impact.htm. [30

November 2005].

20. “Configuring Virtex FPGAs from Parallel EPROMs with a CPLD.” 1999. Xilinx

Application Note XAPP137. 1 March.

21. “Virtex FPGA Series Configuration and Readback.” 2005. Xilinx Application

Note XAPP138. 11 March.

139

22. Andraka, Ray. 1998. “A survey of CORDIC algorithms for FPGA based

computers.” Proceedings of the 1998 ACM/SIGDA Sixth International

Symposium on Field Programmable Gate Arrays. February.

23. Weatherford, Todd R. 2004. Notes on Space Qualification of Electronics. Naval

Postgraduate School, Monterey.

24. Space Systems Academic Group. 2005. NPSAT1 System-Level Launch and

Space Environments Test Plan. Monterey, CA: Naval Postgraduate School.

Photocopied.

25. “Expanded View of NPSat-1.” 2002. Naval Postgraduate School Space Systems

Academic Group, updated 21 October 2003.

http://intranet.nps.navy.mil/npsat/npsat1/default.htm [22 November 2005].

26. “Radiation Effects & Mitigation Overview.” 2004. Xilinx Presentation.

http://www.xilinx.com/esp/mil_aero/collateral/presentations/radiation_effects.pdf.

[22 November 2005].

27. Mills, Carl S., Glenn Hines, Kim R. Fowler, M. Ann Garrison Darrin, Richard F.

Conde, Harry A. C. Eaton. 2003. Adaptive Data Analysis and Processing

Technology (ADAPT) for Spacecraft. Hampton: NASA Langley Research Center,

Electronic Systems Brand, System Engineering Competency. ESTC 2003.

28. Johnson, D. Eric, Ketih S. Morgan, Michael J. Wirthlin, Michael P. Caffrey, Paul

S. Graham. 2004. Detection of Configuration Memory Upsets Causing Persistent

Errors in SRAM-based FPGAs. Los Alamos: Los Alamos National Laboratory.

LA-UR-04-7085.

29. “PN Generators Using the SRLMacro.” 2004. Xilinx Application Note XAPP211.

14 June.

30. “Linear Feedback Shift Registers in Virtex Devices.” 2001. Xilinx Application

Note XAPP210. 9 Jan.

31. MATLAB Ver. 7.1.0.246 (R14) Service Pack 3. 2005. Mathworks, Incorporated.

Natick, MA.

140

32. Cosmic Ray Effects on MicroElectronics (CREME96). 1996. Naval Research

Laboratory. Washington, DC.

141

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Professor Hersch Loomis
Naval Postgraduate School
Monterey, California

4. Professor Alan Ross
Naval Postgraduate School
Monterey, California

